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Abstr act of Dissertation

A DATA -DRIVEN SUPPORT SYSTEM FOR AIRCRAFT TRAJECTORY
PREDICTION IN THE NATIONAL AIRSPACE SYSTEM

Although a recent audit report from the U.S. Department of Transportation shows
declining flight delays over the last decade, scheduled U.S, passenger airlines still
accrued 92 million system delay minutes that were estimated to result in $7.2 billion in
direct aircraft operating costs in 2012. To address these flight delays, the Federal
Aviation Administration (FAA) is implementing the Next Generation Air Transportation
System (NextGen) which aims to transform air traffic operations to meet future growth.
A core component of NextGen is Trajectory Based Operations (TBO), with goals that
include improving throughput, flight efficiency, flight times, and schedule predictability
through better prediction and coordination of aircraft trajectories in the Nafasahce
System (NAS). In this research, a novel appraagresented by constructing a Dynamic
Bayesian Ntwork (DBN) to accurately quantify delay uncertainty for airport ofigin
destination (OD) pairs. Since the size of the conditional probabilitysdBIBTS) grows
exponentially as the number of variables incraasthe DBN, parameter learning was
developed within theHadoop MapReduceigstributed computing framework. Hadoop
aids in the mitigation of scaling concerns which significantly redtieecomputational
time necessaryor air traffic decision support. Experiments are performed using a fused
historical aircraft radar dataset that improves on current data limitations to dynamically
predict the probability of a delay and its causal factor(s) fer dtnategic prediction
horizon. The predictive performance of the model is evaluated by focusing on major OD

pairs in the NAS, and the results show flight delay time was predicted accurately



approximately 92% of the time for the two hour predictiomizum. Furthermore, the
results from the delay model are integrated into a developetmsatrajectory predictor

that recommends which route an aircraft should fly given both historical antinmeal
flight delay information combined with data related to the aircraft and the external
environmentThis research is the first known attempt that combines elements efmsyst
engineering (SE), operations research (OR), and distributed computing conahgrise

a datadriven decision support systefar air traffic decision makersnder operational

uncertainty.
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Terms and Definitions

The following, are key tens and definitions that atesed hroughout the study

1 Componenti Composedf multiple parts; a clearly identified part of the product
beingdesigned or produced

1 Element An integrated set of components that comprise a defined part of a
subsystem

1 Flight Plan 7 A subset of the flight object information used for flight planning
prior to departure that carries basic information about the flight and route to be
followed.

1 Part- The lowest levels of separately identifiable items within a sy&tane not
normally subject to disassembly without destruction or impairment of designed
use.

1 Program- projects of all sizes and complexity, ranging from a System to its
individual parts.

1 System An integrated set of constituent parts that are combined in an operational
or support environment to accomplish a defined objective. These parts include
people, hardware, software, firmware, information, procedures, facilities,
services, and otheupport facets.

1 Subsystem A system in and of itself (reference the system definition) contained
within a higher level system. The functionality of a subsystentributes to the

overallf uncti onality of the higher |l evel sy

Xiii



functionality is lesghan the scope of functionality contained in the higher level
system.

Systems Engineering (SE) a discipline that concentrates on theiglesand
application of the whole (system) as distinct from the parts. It involves looking at
a problem in its entirety, taking into account all the facets and all the variables and
relating the social to the technical aspects.

Traffic Flow Management Initiative (TFMI) i techniques used to manage
demand with capacity in the NAS.

Trajectory -Based Operations (TBO)i NextGen Portfolio of research that focus
on improving throughput, flight efficiency, flight times, and schedule
predictability through better pdéction and coordination of aircraftdimensional

trajectories (4DThich consider lateral, longitudinal, time and space dimensions

Xiv



Chapter 1: Introduction

1.1 Overview

Trajectory Based Operations (TBO) is the NextGen concept of improving
throughput, flight efficiency, flight times, and schedule predictability through better
prediction and coordination of aircraftddmensional trajectories (4DWhich consider
lateral, bngitudinal, time and space dimensiofly. TBO uses the 4DT to both
strategically manage and tactically control surface and airborne operations. Implementing
TBO effectively requires understanding the interactions and-tHddetween proposed
TBO decisions, and sources of uncertainty. For T@ the regional and local NAS air
traffic controllers it would serve, understanding system impacts and relationships have
proved difficult for analysts and decisiomakers to visualize. The mathematics and
concepts of stochastic optimal control are suitedetailed analyses, but they are poorly
suited to providing accessible intuition and explanations to identify TBO characteristics
and tradeoffs. Currently no analytical framework for an integrated understanding and
measurement of TBO uncertainty fothar thestrategic (215 hours) otactical(less than
2 hours)predictionhorizon existsthus stems the importance and high level objective of
this study.

A strategicmanagement decision in TBO is to prediat delay time o&ircraft that
are flying from an origin to destination (city pair) airport under operational and
environmental ungéainty. This studyachieve this task by developing a dynamic
Bayesian network (DBN) model that infers delay time and delay causal vandfles

impact flight time based on a fused set of historical radar track data measurements for

1



given city pairsFurthermore, this study successfully prioritizes aircraft routes in order to
aid air traffic decision makers in recommending the best routake in regard to
minimizing delay based on historical and reale data.This is the first step towards an
application of a datdriven DBN in a dynamic system that can help govern air traffic
decision makers (ATDMs) implementation of traffic managenneititives, air traffic
directives, and policies that are currently based on subjective measures. Theeeafl sta
this ongoing researgbrovides a means of decision supparttthe presence of uncertainty
for air traffic operational decisionscaling fom a local focus (one airportio a NAS

systemwide focus.

1.2 NextGen Explained

The vision of the NextGen is to build on neand midterm (through 2018) systems
developed by the FAA and other government partners, to improve performance
prediction,and c@acity of the National Airspace System (NAS) necessary td 2@sth
requirementg1]. More specificdly, NextGen will allowaircrat to safely fly in closer
proximity on more direct routes, reducing delays and providing benefitsthfer
environmentthrough reductions in carbon emissions, fuel consumption and noise.
Implementation of NextGen will be accomplished through a series of Operations
Improvement (OIl) Incrementbat provide individual benefits and comeé to provide a

paradigm change in the waythe NAS operates. The OI Increments are often

interchangeable with the term fdcapabilities

sewen implementation portfolig]. The FAA portfolios include



1. Trajectory Based Operations (TBO)

2. High Density Airports (HD)

3. Flexible Terminals and Airports (FLEX)

4. Collaborative Air Traffic Management (CATM)
5. Reduce Weather Impact (RWI)

6. Safety, Security anBnvironment (SSE)

7. Transform Facilities (FAC)

The NAS Enterprise Architecture establishes the foundation which evolution of the
NAS can be explicitly understood and modeled. It helps to provide a framework for
managing change in the NAS by providing a vim@) approach and common language.
Ols represent distinct functional improvements to the NAS that provide direct benefits to
the user communityFigure 11, illustrates how the NextGen concept can create

improved capabilities for each flight pleam a typcal flight profile.

4-D Trajectories with fewer conflicls, i i Reduced workload through digital
and more efficient roufing using b Cw/i?ec | communications and more precise
probabilistic weather forecast surveillance and trajectories
)

% N e [Descent/Approach| | Texi |
N\ (o vaming ] [, Jocect ] e ( *

\i Flight Planning cncl Deparhue | /\
\ = -

-

~ The capabilities of cltcroﬂunl‘pped with

Single authoritative weather | ‘_‘ADS-B In/CDTI, synthetic vision, and enhanced | | Increased terminal capacily using
source for flight planning and | | vision will be exploited to improve en route and Integrated ground-based traffic
traffic flow information terminal precision merging and spacing. eand | |management and avionics techn:

—— L

__airbome and suface separation assurance
ry

Figure 1-1: NextGen 2025 Flight ProfilEL]
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Research activities on NextGen teclogy development, integration,
implementation and safety must be accomplisheddoieve the benefits mentioned
above. The interdepédencies that exist betweefBO implementation portfolio and
flight delay predictiorwamrant analysis, not only at the local level, but at the system level
which prior research fails to efficiently achieeom a computational and accuracy
perspectivg2]. Therefore the model should have &iligy to accurately predict not only
flight delays and causal variables, but also prioritize aircoafiesto and from airports in
orderto aid air traffic decision makers recommending theest route to take in regard

to minimizing delaybased on historical and retahe data

1.3 Trajectory Predictor Technology

The FAA [J describesTrajectory Predictor Technology (TP&¥the predicted path
an aircraft will follow through airspace. Aircraft trajectory can be described
mathematically by a timerdered set of aircraft state vectors. This computation is
performed based on input data comprising of the current state and it of the
aircraft. The TPT uses models for aircraft performance, meteorological conditions, and
airspace adaptation data to perform this comput§@pn

TPT can be incorporated into a client application to supportwsaagpplications for
an air traffic based decision support system. These decision support systems will aid in
providing data, advisories, and recommended resolutions to ATM system. A diagram of
the typical process flow within a common TPT structure is dssdin
EuroControl/FAA Action Plari6, and is showim Figure 12. The TPT client application

receives data inputs from adaptation, weather, and aircraft models. The TP application

4



consists of the following four component processes: Preparation, Coraputdpidate,

and Export.
Trajectory Predictor
Adaptation | N Preparation
Data —/] —]  Process G —
L~ Client
Weather Computation Applications
Model ) ' ‘p‘
— Process
I -
L  Update
- | Process
Aircraft . N :
Model —/] ﬂ
R~
Export 0 ~
Process

Figure 1-2: Trajectory Preditor TechnologyProcess Flow[3]

131 Trajectory Predictor Processes
The preparation process [3], constructs initial conditions and a Behavior Model
that outputs a list of aircraft movements. Specifically, the Behavior Model details how an
aircraft will meet trajectory constraints within the uspecified criteria. As described in
[3], the followingare three critical processes within the preparation process that aid in the

development of a simulated aircraft trajectory:

i State Processing:The State Processing generates the Initial Conditions for
trajectory generation.
1 Flight Intent Processing:Flight intent processing operates on a Behavior Model,

or if the Behavior Model is not defined, it will create one from the Initial
5



Conditions and Flight Intent. The Flight Intent processing evaluates the Initial
Aircraft State, bdt laterally and vertically, against the set of constraints defined
in the Flight Intent. The output of the Flight Intent is comprised of the Initial
Conditions and the complete set of constraints that must adhered to during
trajectory generation.

1 Behavior Model Generation: The Behavior Model consists of ordered lists of
maneuvers that the aircraft will perform to meet the trajectory constraints. The
Behavior Model is internal to the TP and is built from the Initial Condition and

Flight Intent information.

The computational process calculates the predicted trajectory based on the predefined
Behavior Model. The update procesmonitors the conformance of theomputed
predicted trajectory. The update process checks to see if the computed trajectory is in
confamance with the trajectory constraints specified in the Input Flight Intent. When the
trajectory is out of conformance, the Update process witbrapute the trajeoty using
the updated Behavior dtlel and/or Flight Intent data.

Finally, the export process distributes the TP results to client processes. These client
processes will receive predicted trajectory data, error messages associated with the data,
and an updated Behavior Model when the trajectory does not makhttie prelefined
constraints.The export process sends its results to the output clients. These results
include the current predicted trajectory, an updated Behavior Model, and any relevant

error messages.



1.3.2 Trajectory Predictor Data Flow
Figure1-3 depicts adiagram of a typical data flow a TP deployment starting from the
client inputs to the predicted trajectory (client output). Client inputs for a TP include:

1 Aircraft State: The Initial Aircraft State represents the aircraft state data at the
start of the rajectory computation cycle and is composed of, but not limited to,
the 3D aircraft position and associated time.

1 Flight Intent: Flight Intent is theelement of the Flight Object that contains the
constraints and preferences applicable to the flight. It describes aircraft, airport,
and airspace constraints and operator preferences.

1 Behavior Model: The Behavior Model contains a list of maneuvers testdbes
how the aircraft intends to satisfy the trajectory constraints and user preferences.

1 Processing Strategies and Configuration Control:The Processing Strategies
specifies how the predictor will conform to the constraints and nenedes
identified in the Flight Intent. The Configuration Control defines processing
characteristics such as aircraft performance models and the functionality of the

integration and exportuhctions.

The research and methods proposed in this disserfatasedon enhaning the
flight intent element within the trajectory preparation process that influehees t
behavior model angrovides the TP with the intended maneuvers that in turn cseate
the predicted trajectory. In addition, this reseai@tusedon choosing the coect
method that would provide the functionality to iteratively learn aircraft intent and

behavior over time. The specific application for this research frathitizes aircraft

7



routesand predicts both the flight delay time and causal reasoosder toaid air
traffic decision makers in recommending the best route to take in regard to

minimizing delay based on historical and reale data

pm-----—-—-- Client ———————————————— oo

i Inputs Trajectory Predictor
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|

|

|

|

|

I

! State Processing

I

I

I

: !

! - -

i Flight Intent Processing

I

! F Y

| I

I r

! Build

: Behavior Model
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! v
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! v
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Figure 1-3: Trajectory Pedictor TechnologyData Flow[3]

1.4 Statement of the Problem
A challenge for flight delay prediction is the difficulty of transitioning research

concepts into systems and operations. One important aspect of this challenge ties to the

8



range of operational variations for which wevelop our concepts and systems. Early
research concepts are conceived with too few of theweddl variations taken into
account mostly due to either limitations of computational power or operational
knowledge [1]. In a program needing to make system traffe for development,
promised benefits must reflect a broader range of routine and reasonable behaviors than
in researchi but such tradeffs can be quite difficult to quantify, and it is difficult to
reflect thefull range of operational events.

In contrast, the operational world embodies everything that theveedd throws at
us. This is where complexity and unpredictability conspire to demonstrate how poorly
our concepts and systems and procedures can farewlteo nf r ont ed wi t h t hir
expect in research or in development. The operations world is not just reasonable and
routi ne: it is the entire gamut of everythi:
not.

A big distinction between these worldsd one that often impacts modernization and
transition to concepts like flight delay prediction is how predictable the world is that our
concepts or systems or operations have to deal with. Limits to predictability and
challenges to transition are bothdaelssed if we focus more closely on uncertainties in
operations by developing a framewdtkat enhances understanding of the impacts of
uncertainty and the quantitative relationships between uncertainty faEtguse 14
depicts a graphical representation detailing the challenge researchers typically endure

when attempting to model a traditionally stochastic environment.



Worlds - 9

«@Eesearch
*Noat and 1&:_)/
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£

Figure 1-4: Research Environme@omplexity

A second challenge wolves having better quality datieom historical sources about
the aircraft and its environmentand using that information to improvRTDMs
predictionat a more granular Vel that recommendghich route an aircraft should fly
given both historical and reéime flight delay informationResearchers can factor in the
type of aircraft, the lateral path, and make pretty good predictions; however, there are
many factors that might happen during igtt that are not very predictabéong with

data quality issues along the wayd these represent some of the challenges.
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Figure 1- 5: Predictability challenges for airport and-eyute delay factors. Not all delay
factorsare included.

As shown in[4], there are a number of causal delaytdes that interfere with
flight predictability. Some of these can be addressed through better standards or shared
planning, and others can be predictedstome degree and compensated for. Others,
though, are simply unknowable until thegcor. Things like a Flight Management
System (FMS)issue that requires the aircraft to fly slower than expected, or an
unpredicted thunderstorm -eaute, or atraffic flow management initiative TEMI)
restriction (See Terms and Definitiopghat is issued at the last minute due to a
temporarily blocked runway ahe destination airportFigure * 5 depictsa visual
representation of some of the more common challenges in flight delay prediation.
truth, there are a nearly infinite number of factors that might happen that are not very
predictablei and these represent dleages to thedevelopment of any air traffibased
model[5].

As a result of these challengethe researchperformed in this dissertation

combinal the best practices in trajectory and flight prediction to create alatvdriven
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decision support tool. This toobmbines more daf@oth historical and redalme) about
the aircrafdb s b e, hhaaireradto p e r airteaty abdsthe external environmehtn
preceding researcheend providesdecision support applications that can be used by

succeeding researchers to build off of.

1.5 Research Importanceand Objectives

The objectives of this research focused developing the big datiriven DBN
development to represent and predict flight delagithe associated causal and temporal
nature of delay uncertainty based off a novel fused historical dafhsetesearclsan be

broken down into the following sutbjectives:

1. Develop a rnamic Bayesian network (DBN) structure for the air traffic domain
that can continuously be developed to answer cexngperational questions

2. Learn DBN parameters from a fused set of aviation data on a big data parallel
computing patform that could not be computationally achieved using
conventional approaches.

3. Determine theoptimal prediction horizon and classification threshofed
Experiment 2: Varying the Measurement Rater the flight delay prediction
model

4. Provide accurate prediction results for both delay and delay causal variables
greater than 80%of the time.

5. Integrateresults of the flight delay model (if successful) into a developed real

Yy LINBRAOGAZ2Y | OOdzNJ O& GKNBSakK2ftR gla GF1Sy TFTNB°
model/simulation standards and aligns with the 95th percentile of accuracy results from related prior art.
12



time trajectory predictothat recommends which route an aircraft should fly given
both historical and redlme flight delay information combined with data related
to the aircraft ad the external environmenidther data discussed extensiveig

Section 3.4

1.6 Research Scope

Because air traffic research (specifically flight delagjegrated with big data
technologies (such as Hadoapgstill in its early stages, there are not many modéls
this naturebeing proposed currently. For that reason, this study does not try to directly
compare the accuracy of the proposed model against other existing niatéks:,the
scopeof this researcleenters on creating a new approach to scale probabilistic graphical
models (specifically) to a computational scale that has never been performed on based on

the authots literaturereview.

1.7 Dissertation Organization

Thisdissertation is aganized asfollows. Chapter 2 is the literature review on relevant
prior researcho set the stage for the research effiod identify why DBNs were ultimatetyhosen
for this researchlhis chapter also takes a granular look at both trajectory and flight delay
prediction in independent stgections in order to portray these as two different topics (as
current researchers typically do) which this research aimed to bring togetiapter 3
coversnecessary background knowledgige development of the big data driven DBN
methodology and stated sobjectives Chapter 4 validates the model based empirical
experiments focused on both prediction accuracy and the intelligibility ofréuicpon

13



for flight delays, associated delay causal variablesmd route trajectoryChapter 5

providesconclusions and further researcliecommendations
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Chapter 2: Literature Review

2.1 Overview
Numerous journa articles have been published on methods fortrajectory and flight

delay prediction ofincertaintyin the NAS In this chapter, some of the key studies related

to the author 6s rAd ofetleerresdarchars ®cused an luding gomeé e d .

type of mathematical or statistical model in orderptedict aircrafttrajectory and
environmentafactors in a particular phase of fliglfBomeof the researchers attempted to

gain insght intoflight delay preliction using the computed trajectory prediction

2.2 Trajectory Based Operations Research

2.2.1 Mathematical Models in Trajectory Prediction

As discussed in Section 1.3, there are four components for the trajectory prediction
process. Of the four, this section will focus on the computation subfunction. The
preparation process brings together all the data necessary for the execution of the
trajectory prediction. Further, it is this process that is responsible for the translation of the
intent script (which this research develops) into the mathematical code used to perform
the computations. The update process ensures compliance with the aiterdafor flight
plan and flags potential loss apatial/temporalseparation (for example) with other
trajectories. It is within the scope of this process to alter the intent script and behavior in
an attempt to regaimirspaceseparation compliancelhe eport process returns the
resulting trajectory to the grousithsed computer hosting the flight object. Because of the
diversity of the modeling equations, different state variables will be exported to update
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the flight object. It should be noted that tHestaction dictates that, at a minimum, the
trajectory should be comprised of four dimensi@aseral, longitudinal, time and space
dimensionspand the geodetic coordinates of the aircraft for the duration of the prediction
time frame. It will be sen th&only one of the many papers referencethplies with this
requirement. Furthermore, some of the papers do nottepe full three dimensional
spaces

The mathematical models under study fall into one of the following classifications:

Point-Mass modes: The majorityof the identified researcl®{17] used point mass flight
estimation models. This feature manifests the tendency toward more realistic modeling of
flight, but lacks the complexity of the kinetic model in that rotational moments are
ignored.The range of complexity varied greatly within this subset of papers.-Paiss

models signify that aerodynamic equations are in pldly thie above notable exception.

Kinematic Models: In these model§l8-20], only position and time rate of changes are
modeled. The model is integrated forward with respect to time, acceleration to velocity,

etc.

Kinetic Models: One papef21] in the set included moments and, therefore is classified
as full, kinetic models. Although this model represents the ultimate leaitypof this
subset of documents, it is listed second to pwiass models due to the overwhelming

number of papers that used pemass models.
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2.2.2 TBO Uncertainty Analysis
Uncertainty inaircraft trajectory prediction has been studied in Federal Aviation
Administration (FAA)/Eurocontrol Action Plan 1g3], which describes and quantifies
major sources of variation in eftd-end timing including departure timing, whikld
prediction, flight intent, and flight parametessich as aircraft weight. Gaydd4]
examined statistical uncertainty at different leadiead times, and found that uncertainty
grew more quickly or more slowly at different points along similar trajectories in en
route. Earliework by Tino, Ren and Clar@2] explains some of this spatial variability
as wind behavior, which also creates increasing uncertainty in timing at longer look
ahead times. Mondoloni and Liaf23] described how variations due to wind observed
along a tajectory can be used to reduce uncertainty and improve predictability and
timing control during the remainder of the trajectory. However, as Rentas, Green, and
Cate have provef4], characterizing NextGen TBO uncertainty impacts is far from
mature and mer research into the causal and temporal relationships of trajectory

predictors is warranted.

2.2.3 TBO Summary
To recap, the research identified in this literature review focused first on the
mathematical modslusedto developan aircraft trajectoryand ensuingapplications of
the developed trajectorwith regards to uncertaintyin this researchthe author has
chosena point mass modefior the computation subfunction (See Figur8)lbased on
results fromthe aforementioned research. Refer to experinfieat (Section 4.2.4), for a

more in depth description on how this comes together with the rest of the research.
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2.3 Flight Delay Research
2.3.1 Statistical Methods

Historical approaches to learn and predict flight time delay and the associated causal
factors of delay can be categorized based on their use of either statistical linear and
nonlinear methodsThe first approach if25] and[26], use linear regression methods to
explain the influence of causal factors of delay. This approach does provide atatistic
accuracy; however it has shortcomings, which include: 1) failure to include relevant
operational and environmental factors, 2) incorrect data independence assumptions, and
3) sensitivity to outliers which togetheninimize its predictive power.

Vigneau [27] studied both delay and delaypropagation from flight segment to
segment using conventionadgression techniques I n Vi gneaudés model , d
dependedon arrival delay from therevious segmentwhich then dependean the
departure delay frorthe previous segment. Time dimensioasport capacity and load
basedfactors weresignificant factos that were identified as influencindelay. The
mode| however,was not applicable in the US because it treats baghther as an
exception. In Europe,nty 1~4% of delay can be attributed to bad weather, whereas in

the UnitedStates 70~75%f delay is due to bad weatHe8].

2.3.2 Neural Networks
A neur al network is typically referred to
predict departure delay from a set of input factors. The parameters of a neural network
model are not easily interpretable, and thus it is difficult to use a neural ketwdel to

gain a comprehensible understanding of how the factors interact to causeDdelayd

18



Liou [29] developed an artificial neural network model to estimate individual flight
departure delay for the application of real time air traffic flow mamege The network
incorporated70 nodes irthe hiddenlayerand was shown to outperforimear and non
linear regression methedvith their chosen dataseThe primary factorsnfluencing
delay in this study werairline, aircraft typetime of day,day of week, route flight
sequence and traffic flow.

Jehlen et a[30] developed a neural network model for predicting weatblated
aircraft delays and cancellations at the national, regional, and airport levels. The network
proved to slightly improve on dditional linear regression methods for predicting
airspace metrics such as total aggregate delay, arrival delay, airborne delay, and flight
cancellationst different scaleshowever, the lack of generalization that a neural network
provides to understanchusal delay interactions for widgplication stakeholder use is

still absent

2.3.3 Hidden Markov Models

HMM models a firstorder Markov process where the observation state is a
probabilistic function of an underlying stochastic process that produces the sequence of
observations. The underlying stochastic process cannot be observed directigders
Both the hidden and observation states are modeled by discrete random vasables
shown in Neogi dés work where he and his col |l e
in aircraft flight data for conflict resolution [31].

The HMM formalism first appeared in snal statistical papers in the ml®60s,

but it took over ten years before its utiliyas recognized. Initially, the use of HMMs

19



was a great success, especially in the fields of automatic speech recognition (ASR) and
bio-sequence analysis. Because ofiiscess, the use of HMMs in ASR is still dominant
nowadag, despite its lack of consistent performance.[32]

One of the main problems of HMMs is the fact that the émdstate is represented
by a single discrete random valie. DBNs are able to break dothe state of a complex
system into its constituent variables, taking advantage of the sparseness in the temporal
probability model. This can result in exponentially fewer parameters. The effect is that
using a DBN can lead to fewer space requirementstfer model, less expensive

inference and easier learning.

2.3.4 Kalman Filters

A KFM is a HMM with conditional limar Gaussian distributions [33t is
generally used to solve uncertainty in linear dynamic systems. The KFM formalism first
appeared in papetia the 1960s [3§ and was successfully used for the first time in
NASAG6s Apoll o progr am. Nowadays, it is still
KFM formalism assumes the dynamic system is jointly Gaussian. This means the belief
state must benimodal, which isnappropriate for many problemBhe main advantage
of using a DBN over a KFM is that the DBN can use arbitrary probability distributions
instead of a single multivariate Gaussian distribution.

In application, Reference [12] reported @al data testing of a reiine freeway
traffic state estimator, with a particular focus on its adaptagabilities. The pursued
methodto the reatime adaptive estimation of the complete traffic state in freeway

stretches or networks is based on séstic macroscopic traffic flow modeling and an
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extended Kalman filter. Advantages are demonstrated via suitable real data testing. The
achieved testing results are both acceptable and promising for succeeding applications
but the author specifically mentis the lack of generalizability constraints when working
with Kalman filters which DBNs compensate foOther research effort¢] and [37]

use Kalman filters to estimate time of arrival based on a trajectory prediction technology.

2.3.5 Bayesian Networks

Bayesian networks have been applied to various scenarios within the air traffic
domain because of their ability to provide approximate models for complex, and/or
poorly understood problems. Pepper, Mills, and Wol@R] presented a method of
accounting foruncertain weather information at the time of traffic flow management
(TFM) decisions, based on Bayesian decision networks. They found that the data from
past TFM events was not sufficient to distinguish between strategic TFM decisions, in
terms of metricsbased on overall delays, cancellations, diversions, and departure
backlogs. However, the results did show that useful information can be extracted from
data on past TFM events by focusing on specific elements of the strategic TFM process
rather than the dine process comprehensively. From this research, it was imperative that
both tactical and strategic levels of TFM were considered in the proposed model.

Ning et al [39] used Bayesian netwmkto estimate delayith a focus on
investigating and quantifyingow flight delays from a single airport propagate to impact
other airports. Specifically, their methodology combined multiple individirglort
Bayesian network models into a systiwel model capable of representing interactions

between airports. Theistudy demonstrated that integrating human judgment with
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statistical analysis in structure construction and parameter estimation can improve
prediction accuracy. To simplify their calculation, the model only takes into account
weather effects and flight ckac el | at i ons. Their model di dnot
factors which can affect delay such as demand, en route variables, and aircraft type (to
name a few)which are accounted for in this study.

Liu and Ma[40] developed a flightlelay and delay propagati model based on
Bayesian networks. They trained the network with real data using the Expectation
Maximization (EM) algorithm and analyzed the influences from delay under different

states.

2.3.6 Dynamic Bayesian Networks
A BN is useful for problem domainshere the state of the world is static. In such a

world, every variable has a single and fixed value. Unfortunately, this assumption of a
static world is not always sufficient. dynamic Bayesian netwo(oBN), which is a BN
extended with a time dimensiorgn be usdto model dynamic systems [4While there
was no identified research on DBNs within the specific scope of this restacythor
chose DBNs due to their successful applications in other fagdsifically in creating
prognostic decision support systems for medical diagnosis of dissast®wn by42-
44]. These researchers provide the needed proof to shoviDBis$ have become the
representation of choice because they embody a good tradéwHebeexpressiveness
and tactability. Figure 21 depictsthe benefits of DBNs from both a knowledge
representatin and reasoning perspective. Through its structure and its parameters, a

DBN comprehensively describes what is known about a particular dandimims to
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establish the interactions of all the variables contained within that dodsiauch, a
DBN <can be referred to as a AfPortabl e Know

compactly communicate the state of the domain as well as its dynamidsrer
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Figure 2- 1: Benefis of DBN for Decision Suppdftt

2.4 Literature Summary

A reviewon both trajectory prediion and flight delay researttasbeen explored in
this literature review regarding the prediction of flight delay in combination or
independent of trajectory based operations uncertaifitg. DBN formalism in this
research is thérst development in temporal reasoning under uncertdortyhe defined

scope of this research. Literature has shown that DB&N®s have some significant

2 Figure taken from: bayesia.com
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advantages over the aforementioned algorithms. In terms of-spaiee modeJ]sHMMs

and KFMs are really limited in theexpressivepower. In fact, it is not even correct to

call HMMs and KFMsother techniqueshecause the DBN formalism can be seen as a
genealization of both HMMs and KFMand can be iteratively updated with the
incorporation of data sources and subject matter experts in the field as will be described

in succeeding sections.
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Chapter 3: Development of FlightDelay Model

3.1 Overview
Theensuing chpterdescribs the stepg towards the design and implementation of
an aircraft flight celay model; a DBN foraircraft flight delay prediction and the
associated causal delay factoss. general overview of théackground knowledge

requiredand the methdology for theDBN are shown irFigure 31.

Background Knowledge
Actor Interactions in National Airspace System
Prediction horizon and classification

Operational and environmental constraints

Problem Data arame ter
domain Processing p
learmnsz

DBN DBN Experimental Empirical
formalism structure P P!
. Design experiments
extension derivation

Figure 3-1: Background andverview of steps for modeling delay prediction with a
DBN

3.2 Background Knowledge
To understand the advantages of using DBNs as the formal basis for prediction of
flight delay, it is important to first establish a formal definition of flight delay. Acecaydi
to the FAA, a flight can be considered as delayed if the operation takes place 15 minutes
after schedulegpushbacl45]. In this work, the author adopts the definition[48] [47]
and defines delay as the time difference betwe=al and schedule@parture and arrival

time.
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3.2.1 Actor Interactions in the National Airspace System

To develop aabust delaymodel, it is imperative to first understand the actors
that interact in the National Airspace System (NAS) dmel time horizons in which
decisions are requiredrigure 32 depicts an abstract view of thmodel interactions
between an aircraft (flight crew) dnwo ATDMs (traffic flow management and air
traffic control) in termsof how ATDMs make decisiongbout flight planningand a
decision model of how #ight crew respondsSpecifically, & the aircraft flies frm one
state to the next, the factors that typicalffect where the aircraft will be in the next state
are the current flight plan said aircraft is following, current weather conditions that may
affect the lateral path, and other delay risk factascurring either emoute or at the
arriving airport asoted in Section 1.4The goal is to predict the duration of flight time
delay as the optimal mimnization factor in order to provide tHmasis to changéhe
aircrafts route in reatime which is referredto in Figure3 as A NAS .0OTrUsa&tdment s
as an examle, if an aircraft is flying from airport A to airport B and no risk factors are
triggered, then the aircraft should getit® destination on the same flight plan routte
departed from; however, if an aircraft is flying from airport A to airport B aedther
requires the aircraft to changfs route path, this researececommends which route an
aircraft should fly given both historical and r¢imhe flight information.This suggests
that the intenunder which each actor operates must be knamch the BN model is

used to quantify this intent and continuously updab@ased on new information
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Traffic Flow Management (TFM)
and Air Traffic Control (ATC)

Figure 3-2: An abstract representation of decision making

The actors who affect the way a flight is planned and exeadatefined inj], are

listed below with their respective primary functions:

1 Flight Crew (FC) has ultimate control and responsibility for the safe operation of

the aircraft;

1 Air Traffic Control (ATC): provides a safe, orderly, and expeditious flow affic
on a firstcome, first served basisften operating in the tactical decision space (< 2

hours lookahead time);

1 Traffic Flow Management (TFM)balances air traffic demand with system

capacity to ensure the maximum utilization of the National Airsp&gstem

(NAS) often operating in the strategic decision spaeks(Bour lookahead time).

3.2.2 Delay Prediction Horizons and Classification Thresholds

For this studyfour different prediction horizons were analyzed: 2, 4, 6, and 24
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hours for delayprediction in the strategic planning phase which, if accurate, benefits all
mentioned actors. In other words, the prediction horizon denotes the predicted delay after
2, 4, 6, and 24 hours from the initial tifneAdditionally, a classification threshold
prediction mechanism was established, where the output is a binary prediction of whether
the delay is more or less than a predefined threshold. This study tests four delay

classification thresholds=-80, 3060, 6690, and > 90 minutes.

3.2.3 Dynamic Bayesian Neworks

DBNs expand ortonventionalBayesian networks because they offer the ability to
represent the temporal nature of a process or system well. Additionally, the DBN model
provides the ability to learn from statistical data, relevant literature, anctmpe
expertise, while also providing a causal approach to modeling.

According to [48],Bayesian networks represent stateof certain phenomena at an
instant in time. A Bayesian network B = (G,P) is a pair where G is an directed acyclic
graph (DAG), vith nodes corresponding to a set of random variables X, and P is a joint

probability distribution (JPD) of variables in X, which factorizes to:

PL B.lER Z<L 1)

Wh e r X) are the parents o in G. A JPD representatiorby a Bayesian network
typically decreaseshe numbe of parameters that are needed for estimation and
ultimately enable®fficient probabilistic inferencadowever in many applications, the
goal isto represent the temporal evolutionaotertain process, that is, how the different

system variables evolve with tifieor event, by reasoning over random processes X =

® Initial time is estalished for this rese@h to be at 6am Eastern Time since commertific adivity
throughout the NAS is at its lowest volume in the hours preceding.
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{X(t):tY Tnktead of random variables. Extensions of BNs to model these processes
are calleddynamic Bayesian network®BNs) [15]. DBNs assume that the Markov
property holds, which states that the future is independent of thegpest the present;

therefore, the following factorization is obtained:

reo= || |] Paxoi=xw @

teT XtheX(t)

Where X () ={X (t) : X} &

Given a potentially infinite time horizon, the specification of a diseigie DBN
may be prohibitive due to data scaling concerns. In order to allow for a compact

specification the following assumptions regarding DBNs are generally made:

1 The DBN is fist-order Markovian:

L < - 4 ST < (3)

such that the future is independent of the past given the present time.

1 The DBN is timeinvariant:

T4 om0 YU T < =i HA T H (@)

such that the same independence relations hold at each point in time foP UX éndt,

u s t+cu+c,s+ca T.
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1 The DBN is homogeneous:

F+ <« ksr « |}« srer < (5)

such that transition probabilities are fixed for UPMX andt,t 6, t + .loothet 6 +
words, As the DBN goes from one stateatmther;structure of the DBN remains the
same from start to end.

Given these assumptiofe each temporal slica dependency structure between
the variables specifying the initial distribution of the joint process can be developed,
called theprior model It is usually assumed that this structure is duplicated for all the
temporal slices (except the first slice, ieth can be different). Additionally, there are
edges between variables from different slices specifying how the process evolves as time
goes fromttot+1fortd { 1, 2, é} ,  w hransitton ndodeflri thissredelt h e
variables at time are depictd by dashed objectsyhile variables at timg + 1 are
depicted by slid objects. The temporal foundation in applicatisndepicted by the
choice of the prior and transition model, while causal knowledge, such lsligfghat a
traffic flow managemeninitiatives (TFMI) cause an air traffic directive (ATDYi.e. air
traffic controller command to pilot), and the influence of raffic Flow Management
initiative (TFMI) and ATDs on aircraft flightlelaytime (i.e. delayed >30min, >60min,
etc.) is capturedas well. Figure 33 depicts an abstract example of a DBN, where the
influences between aircraft flight time delai&Mls, and ATDs are depicted by a prior
transitioral DBN model.For exampleif Traffic How Manager sets a NAS initiative to
delay aircraft on the ground and/or in thedaie to erroute weather, this gets forwarded

to air traffic facilities and the air dffic controller takes necessary action by providing
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directives to slow down or divert aircraft off their intended lateral flight plan path. This in
turn, creates a flight delay for the aircraft going from airport A to airport B. Figdre 3
aims to depicthis abstract process in order to introduce how a DBN whichsttieist

scenario from one state to the next.

———  e---—-- N E—
ATC | atc | ATC
Directive : Directive =—> Directive
U A

. T 3 —
Flight I Flight Flight
Delay : Delay | Delay
| J -
s
TFM | TEM | TEM
Initiative : Initiative :—)' Initiative
— L —— \ J

Prior Model Transition Model

Figure 3-3: Abstract example dPBN that represents the influences between NAS actors

In this study, theauthor extends the prietransition DBN standard, and devetogn
extendedormalism (see Section 3.5hat provides more modeling power and improves

performance in terms of execution time and memory usage

3.3 Problem Domain
Prior to the development of an effe&iDBN, it is necessary to formulate a concise
and explicit problem escription. It is also essenti&h constrainthe domain of the
problemin order tocontrolunder which coditions the model may be applicable
The primary objective in this researchnsproving prediction support in the NAS
it pertains to aircraft flight delay and route plannidgsystem such as the NAS may

include software, hardwar@eople, information, physical infrastructurgervices, and
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othersystemsupport itemd2]. Figure 34, depicts the developed system hierarchy that

breaks down the NAS for the problem domain.

. National
Main System Airspace
System

I Ll
Sub-System l Airport X \ l Airport Y l Airport Z \
Elements Delay TFMI Capacity
Prediction Prediction Prediction

| | 1
Components DBN Node | ll DBN Node | | DBN Node
X Y z
|
Parts Time Slice Time Slice Time Slice
X Y z

Figure 3-4: Problem domain system ngchy

The fllowing are definitionextracted from [Rfor succeeding levels withithe
systen/subsystem hierarchy taken, as well as the specific entity descnysed for this
research purposes. Keep in mind, these are assumptions used for the particulars of the
research at hand and can be altered based on the overall afctipe analysis. For
example, if a morgyranular analysiss required, thanain system could in fact be the

airport and subsystem being the all elements specific to said airport.

1 System An integrated set of constituent parts that are combined in an
opeaational or support environment to accomplish a defined objective.
These parts include people, hardware, software, firmware,
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information, procedures, facilities, services, and other support facets.

o Description: The NAS is the higher level system in our
emgrical scenario.

1 SubsystemA system in and of itself (reference the system definition)
contained within a higher level system. The functionality of a
subsystem contributes to the overall functionality of the higher level
system. The s c dyndionalify is kess thankthe gcope e mo6 s
of functionality contained in the higher level system.

o Description: An airport or set of airports are the subsystems,
since by definition, airports ar e
NAS.

1 Element.An integrated set ofotnponents that comprise a defined part
of a subsystem.

o Description: Since the primary focus of this objective is to
provide prediction support, our elements include the type of
elements that we are interested in predicting (e.g. flight delay
prediction, taffic flow management prediction, and airport
capacity prediction).

1 Component.Composed of multiple parts; a clearly identified part of
the product being designed or produced.

o Description: In order to predict the element flight delay (for
example), we wilneed to identify multiple nodes or attributes

that have causal relationships. In this casece a DBN was
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used,the authomused this level for thenultiple nodes for each
element.

1 Part. The lowest levels of separately identifiable items within a
system are not normally subject to disassembly without destruction
or impairment of designed use.

o Description: At the lowest level, the time dimension will be
used as segmentation for the NAS. Since the main actor for
prediction is based on the aircraft, timendse broken out into
parts to provide prediction at a particular phase of flight (e.qg.

ground departure, ascent, cruise, descent, ground arrival).

Uncertaintyin this studyis characterized based on behaviorsa population of
flights with the same orig and destination. The uncertainty associated with the delay
variables is roudly a function of the datshat is being used to produce the dedang
routeprediction.Table 3 1 lists each category of variables that are utilized for the model
separated by fixed and temporal variables. Fixed data are categories of variables that have
only one value over the duration of the prediction horizon. Temporal data are categories

of variables having a value for each prediction horizon

Table 3- 1: DBN Fixed and Temporal Categories of Input Variables

Fixed Categories

Code Wording
AcChar Aircraft Characteristics (e.g. model type, airline)
CityP Multiple origin to single arriving or departing airport
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Fixed Categories

Code Wording

Season Season (dapf-week, montkof-year)

DepGD Departure Ground Delay time

AirbD Airborne Delay time

ArrGD Arrival Ground Delay time

CdDepGD Causal departure ground delay factors

CdAirbGD Causal airbornground delay factors

CdArrGD Causal arrival ground delay factors

DTResult Delay time prediction

Temporal Categories

Code Wording

SchTra Scheduled Traffic at timie

LatPthi Lateral path of ATC sectors traversed at time i

DepGDi Departure ground delay at time

AirbGDi Airborne delay at time

ArrGDi Arrival ground delay at time

CdDepGDi Causal ground departure delay factors at fime

CdAirbGDi Causal airborne delay factors at time

CdArrGDi Causal ground arrival delaydirs at time

DTResult Delay. clasgifigation th_rr?)shold. .-@Dmin,3060min,6090min,
>90min) prediction probability at time

3.4 Data Processing

Previous research into delay predictjdf] [50Jlus ed t he FAAOGs Avi ati
Performance Metrics (ASPM) database for input datarovide the delay picture. While
ASPM provides detailed data on flights to and from airports, it lacks robustness as it only
provides this data for 77 airports, 22 casjeand some VFR (visual flight rules) traffic.
For this study, a more robust data source was utilized by using aircraft radaraeack d
from MI TREG6s Center for Advanced Aviation and
otherwise known as Threaded Tradkreaded TracKuses a range ofadar position

coordinates (latlon) throughout the flight into a single synthetic trajectory by applying a
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series of noise attenuation algorithifgd]. These sources include the National Offload
Program (NOP), Airport Swaite Detection Equipment System (ASRJEand Enhanced
Traffic Management System (ETMS) data.

ETMS provides the lowest quality position source updating at approximately one
minute intervals and is utilized only to fill gaps. NOP data used within Threadel has
three different formats: NOEenter which provides position reports during the En Route
phase of flight; NOP Automated Radar Terminal System (ARTS) and N&&hdard
Terminal Automation Replacement System (STARS) contain Terminal Radar Approach
Cortrol (TRACON) position returns for the flights with those specific automation systems;
and ASDEX data provides one second update rate positions on the airport surface and in
the immediate area around the airport.

For this studythe autholeveragedand liilt on a MITRE developed data analysis
project that centers on the fusion and fpystessing of the threaded tracks with relevant
external data sources. Although ASPM was one of the sources used to provide the flight
delay story integrated with threadeedck, an algorithm needed to beveloped to fill in the
gaps. The authat e v e | o p e-df-f & i § prrogessng agbrithm that takes the time
series points of threaded tracks, partitions phase of flights based on the radar source and
aircraft horzontal or vertical characteristics, and tags the phase of flight from beginning to
end. Figure 35 depicts an example of how Threaded Track stitcloessces of aircraft
position data to provide an accurate sirgglarce gatéo-gate record of the position of the
flight along with a visual depiction of how the phase of flight fpretessing algorithm

would partition and tag the data for each flight segim
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Figure 3-5: Threaded Track gatm-gate flight cita sources used for each phaisight.

Thedata processing steps performed to crelateaded track are depicted in Figure 3

6 andarethoroughlydescribedn the following subsections
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Figure 3-6: Data Processing Steps
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3.4.1 Data Segmentation

The NOP and ASDK data source are stored in a text format with one row per
radar return. Although a track identification (OD) columrpresent in each of the data
sources, the ID values are recycled within each air traffic facility and therefore do not
uniquely identify with a track. The segmentation process groups related radar returns into
segments, and assigns a unique segment IBathh group of returns. This process is
designed to avoid merging two flights whenever possible, and minimize the possibly of
splitting a single flight into multiple segments.

This process uses different criteria for assigning points to a segment depemdin
the data source. The procdssginsby grouping the returns by air traffic facility, date,
and sourceassigned track ID. The groups of points are then sorted by ascending time.
After the points are grouped and sorted, the segmentation criteria diexl appeach
point in turn, and points within a segment are assigned the same segment ID. The

segmentation criteria are specified by Equatiofs 6

slaars i
timelA(point, pointy) < 60 sec, il source ¢ {.-\!':'IJl':.\L NOP, .\'EM'} (6)
timeCheck(point;, point;) = . .
timmeMlpoint;, point;) < 144 sec, if soure NOP

Equation 6 is used in the segmentation logic to ensure that two successive points
in a segment are temporally close. The longer update period in N@&utendata

requires a looser timleound between successive points.

i stars g
distonee(poind;, poind ) < 5 nmi, il souree c ¢ NOP, NOP 7)
lateralCheek(point;, poind;) =

. . ) ) center
distance(poind;, point;) < 100+ 20 + (Hemedpointpointy ] ) nmi,  if souree = NOP
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Equation 7 is the lateraistance check which was developed to ensure that two
successive points are within a reasonable distance edrwtaer. Successive points that

fail the distance check occur most often when a track ID is recycled by a tracker.

flightinfo = {beaconCode, aircraftld, computerld}
N

, (8)

flightIn foCheck(point,, point; ) = ( point;| flightInfo,| = point; [flight l'n_,l"r.l,_.l) = 2
1

n

Equation 8 is th flight information check used for NOP -spute records. This
was developed because the computer ID is commonly duplicated among tracks within an
air traffic facility. The flight information checkvas developed to use the beacon code
and aircraft calsign information along with the computer ID to group points together.

Any two successive points in a segment must agree on at least two of the three fields.

(point;[modeS| == point;_[modeS]) o
| l I ] if source = ASDEX

L timeCheck{point;, point;_1),

lateral Check|point;, point;_ i stars  agw
e e e RO ',IJ if source € {,\ OP, N r;f'} (9)
sameSegment(point;, poinl_,) = & timeCheck{point;, pointi_1}, ;
flightIn foCheck(point;, point;_)
center
& lateralCheck(poinid,, point,_ ) it source = NOP
& timeCheck{poinl;, point; 1),

Equation 9 describes the rules used to assign pairs of successive points to a
segment. For ASDE data records, successive points that share a track ID are
considered to belong to the same segment if they have the sameSMatlee, and pass
the time checkNOP, STARS, and ARTS records must pass the lateral distance and time

checks, NOP emoute records must additionally pass the flight information check.

40



The segmentation process is implemented as four jobs, one for each data source.
This process utilizes distributed computing software framework called MapReduce.
The Map Phase of each job us used to perform the grouping and sorting of radar returns.
The Reduce Phase implements the segmentation criteria outlined above. The MapReduce

process will be discued more extensively in Section 3.7.1.

3.4.2 Segment Metadata

After the raw data is genented, theauthor developed anetadata collection
processhatbuilds the segment level metadata to better understand the characteristics of a
segment. This information isubsequently used by the Fusi®nocess to connect the
segmentso build the basic Flight Metadata. This process builds and collects information
including the flight start time and flight end time for each segment. Gtle¢tics built
will be discussed in&tion 3.4.5. An even deeper dive into these metrics can be viewed

in the data schema in Appendix B.

3.4.3 Data FusionProcess

The fusionprocess is designed to take one track, recorded by two separate air
traffic facilities and merge those tracks into oreck that crosses between multiple air
traffic facilities. This process may potentially need to examine the entire collection of
data segments of the applicable time window. In order to reduce the associated magnitude
of data that would need to be examinedly the persegment metadata utilized in this
process. The metadata is an incomplete view of the segniterdstains only higHevel

attributes such as: aircraitlentifier, airline, departure and arrival airports, and the
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bounding values of timdgcation,altitude, and speeds. The fusiorocess is designed to

fit between the segmentation process (which only aggregates dleéfirlgd, time
contiguous radar data that corresponds to a flight and radar sensor) and a smoothing
process (which examinedl track data available pdiight), and may therefore decide to

split a previouslyfused flight). Therefore, fusiors designed to reduce false negatives at

the expense of false positives, thus split flights will never subsequently be reconsidered
for merging by the smoothing process.

Fusion considers two primary attributes above all othén® window of time
associated with a segment, and the set of aircraft identification metrics associated with a
set of segments that create a fused track. The timdow is based on the notion that
different radar sensors will generally overlap in coverage of a flight as time progresses;
overlapping time windows (within a reasonable quantum at the ends of the segment to
allow for the radar sweep rate and possibitynissing a few data points) imply that two
segments may represent the same flight. In addition, aircraft IDs, for the most part, are
highly consistent through the evolution of a flight. This means that usually, such an ID
can be used successfully to jaal segments for a flight as long as the time window
constraints can be observed. There are a small percentage of flights where IDs are
inconsistent; this occurs because IDs have been abbreviated or misspelled as part of a
manual data entry process alonige way. These flights with multiple IDs are
recognizable because of segments where multiple IDs or other identifying metadata
appear in single segments that can be used to join segments with different IDs.

This fusion process is typically difficult to process in a parallel computing

environment; however, due to the vast volume of data, a parallel computing environment
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is required to complete the process in a timely manner. For this reason, the utilization of a
single fight ID allows for an opportunity to parallelize the problem to a per flight
process. The author developméthodto handle processing is described by the following

algorithm:

1. Load the segment metadata, which comes from multiple sources (NOP-ASDE
andETMS)

2. Group the data by aircraft ID, for sets of segments where such IDs are
unambiguous keys for fusing flights, and create a separate group of ambiguous
cases.

3. Sort the data from each group by time and stream it into a Java program that
processes theegment metadata and emits pairs of uniggelyerated flight IDs

and segment IDs for the next step of processing.

The data fusion algorithm expects its data as a-someed sequence of comma
separated value records that represent the segment metadptac&ssing these records
in a temporal order, they can be fused into flights by examining only records that fit
within a time window that corresponds to the longest segment duration plus the time
qguantum. As records expire from this window, they probathy not overlap any
subsequent records, and their corresponding flight data can thereforaitied. The
records that lie within the current time window are indexed by all metadata attributes
(aircraft ID, airline code, airports, facility ID, etc.) thancbe used to match records to,

or exclude records from, flights. These indices permit very fast matching of the limited
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set of data in memory at any point in time.

3.4.4 Track Smoothing and Filtering
Each facilityos surveil |l am@awability sanda of fer
coverage. This final step creates a synthesized track by smoaihihgveighting the
contributions from each data source. Further explained, various sensors are integrated by
first computing a smoothed trajectory from each data so8inee the Threaded Track is
built off historical data sets, least squares smoothing filters have been shown to create
better trajectory estimagehan thosein used tracking systems which are subject to an
inherent measurement lag from aircraft accelenati®2]. These filters also provide
derived parameters from the raw trajectory such as speed, heading, climb gradient, etc.
Each radar sensorods continuous derived trac
Track using a weighted average based onthheler | yi ng accuracies in

sensors and data quality.

3.4.5 Flight Metadata

The FIlight Met adata process unifies merg
single summarized flight record. This output contains all of the relevant metrics available
from the source data in addition to providing links to external data sources such as
ASPMG6s f | i ghtFigdre 37asgpicts thet waifl@ve schematic of how flight
delay information was integrated in the data automation workflow. As discussed
previousy, the process utilizes NOP, ASBXE and ETMS segmentation metadata and

smooth track data information to generalgorithms (TrajectoryFusion, PhasesOfFlight)

44



which in turn generatélight metrics (i.e. Threaded Flight, Phases of Flight). External
flight delay data sources (as shown) were integrated into the data workflow process for
model development discussed in succeeding sections. Appendiepi&ts the input,
process and output considerations for the complete list of data fused algorithms tested in
this research. In addition, Appendixd@picts the data scherofall of the variables used

in model developmertesting.

Legend

CurrentAlgorithm

Planned A lgorithm

PlannedData

FlightDelayFusion

ThreadedFlight

FlightDelay
PhasesOfFlight

PhasesFlight

PhasesFlight
Derived Attributes
Throttle Up Time
Take Off Time
Cruise Time

Top of Descent Time
Landing Time
Exit Taxi Time

Figure 3-7: Data Fusion Workflow

3.4.6 Data Quality

Due to anomalies in the data, a flight can end up reporting multiple call signs,
departure/arrival airports, and aircraft types. To solve this issue, the Flight Metadata
process ranks each type of information on the number of times it appears in a single

flight. The highest scoring information is consideredtlas best guess. The Flight
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Metadata process also preserves low scoring entries for later improvements and analysis

purpose.

3.5 DBN Formalism Extensions

As stated in Section 3.3, the standard for fonulating the structure of a DBN is
typically modeled using a prior and transition, assuming adndr Markov process,
time-invariance, and homogeneity. Unfortunately, to robustly model and infer aircraft
flight time delay in the presence of uncertaimgguires extensions for a kdrder
Mar kov process, wh e r[%8]-thisis MupogsiblgAiother issmg mal i s m
with the previous formalism is when uiinog the network for inferencesvery node is
copied to every timalice, even if it has @&onstant value for all timslices. Lastly,
although it is possible to introduce a different initial state using the previous method, it is
not possible to define a different ending state, which can be useful for modeling variables
that are only interestgnafter the end of the process. These three observations form the
basis of extensions to the DBN formalism.

To offsd these constraints, the autlapplied a formalism extension consisting of
five components: (1) Temporal arcs, (2) Temporal plate, (3)edgmral nodes (C), (4)
Anchor nodes (A), and (5) Terminal nodes (T), as shovigare 3 8. A temporal arc is
an arc between a parent node and &atode with an index that denotes the temporal
order. The benefits of temporal arcs are that they provide a more comprehensible
visualization and allow for a much easier DBN specification that requires less coding.
The temporal plate is the area of theNDBefinition that holds the temporal information

of the network. Specifically, it contains the variables that develop over time (and are
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going to be unrolled for inference) and it has an index that denotes the sequence length T
of the dynamic process. Tlhenefits of a temporal plate have the effect that regardless of
how many timeslices the DBN is unrolled to, the nodes outside the temporal plate are

unique.

Contemporal Node
A node outside the temporal plate
whose values remains constant over
\ time

Temporal Plate
Area that holds the temporal
) information of the network.
/ Contains the variables that
~—\ develop over time /

Anchor Node
A node outside the temporal plate
that has one or more children
inside the temporal plate and is
only connected to its children in
\_ the first-time slice /

Temporal Arc
Arc between a parent node and
a child node with an index that
T denotes temporal order

# of Time-slices k

Index that denotes that the DBN is ~—
going to be unrolled for t = 5 time-
“slices

A node outside the temporal plate
that has one or more parents inside
the temporal plate and is only
connected to its parents in the last-
\time slice

Figure 3- 8: The five components of thBBN extended formalism

This is useful for the next component, contemporal nodes, which are nodes outside the
temporal plate whose values remain the same over time. For instance, if an ATDM is
seeking information on a specific aircraft type (e.g. an Airbus A3alcraft type des

not vary over a flight they would specify this in the contemporal node which saves
memory and computational time. Lastly, anchor and terminal nodes are Inodt=i
outside the temporal plate that have one or more children inside the temporalnplate, a
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unrolled for inference, these nodes are only connected to the first and lasli¢tene
respectively. These nodes are useful for situations where it would be useful to introduce
extra variables before the start or after the end of the processothait cheed to be
copied for every timeslice. These nodes are of vital importance for the DiBthis study

since they weraised to extend the DBN formalism in a way that works for the NAS
system. Additionally, they weresed as a guideline to develop &iiceent DBN structure

for the flight delay prediction model.

3.6 DBN Structure Derivation

The developmenbf a dynamicBayesian network structure can be a demanding
undertaking The initial specification of network structure is a challengask and the
best heuristic is to keep @oncise. Concisenodds can incrementally be expandéesl
more detailed andcomplex models by addindetail to the network via a nodand
evaluating he functionality of that nodeStarting with omplex models typically makes it
unmanageable to evaluate functionality, since distant variables may interact in complex
ways[54].

Construction of the DBN structure commenced with the identification of factors that
had a direct influence on aircraft flight delay. This is driven by #ue that flightdelay
has anextensiveimpact on how ATDMs respond tissimilar situations of operational
and environmental uncertainty. They causal factors thalirectly influence delay are
discriminatedinto the following categories according to thehase of flight:ground
departure causal delay factors, airborne causal delay facemdground arrival causal

delay factors.Using ground departure causal delays as an example, variables in this
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category includerunway configuration, weather, traffic interactions, traffic restrictions,
andrunway queue positiorsee Appendix A & B for an in depth explanation of both the
input and output considerations that went into building said variables as well as the data
scheana which is the end product variables developed from both the fused data sources
and developed algorithm3he presented model was developed incrementally using a
combination of domain literature, expert knowledge, and regression an&igsiee 39

depicts how the DBN model carries out the task of predicting delay time and causal delay

factors using the extended formalism.

Seasoni amTToTTmmmmmmmmoo oo -
N

ASIER
N Hﬁ' 8/

= L -— =Temporal Plate

Figure 3-9: Extended formalism for a secondder DBN.

The present model is an example of a seamd@ér DBN using the extended formalism
discussed in Section 3.5 In other wortl®e variableghat have a red arrow with the
number two in the box, means that the model predicts flight delay best when the previous
two instances are taken into accoufhe anchor and contemporal nodes are placed

outside the temporal plate (squargashed line). Théemporal plate denotes that the
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DBN will be unrolled for t = 4 timeslices. In this graph, the nodes that are grey can be

fully observed and the nodes in white contain missing values.

3.7 DBN Parameter Learning

After obtaining the DBN structure, parametergrev learned from the fused
threaded track dataset using the Expectation Maximization (EM) algorithm. EM is an
iterative algorithm that enables learning models from data with missing and/or latent
variables. The EM algorithm consists of an expectation (Eegtep) and a maximization
step (M step). In the E step, the probabilities of the missing variables are calculated given
the observed variables and the current values of the parameters (sufficient statistics are
computed). In the M step, the parametersracomputed using the fillad values as if
they were observed values. The process of filimthe missing values and updating the
parameters is iterated until convergence. The different variants used for learning
parameters in Bayesian networks froottbcomplete and incomplete data are discussed
more extensively if65].

While the EM algorithm generally works well in estimating missing and/or latent
parameters in probabilistic graphical models, two problems for DBN parameter learning
using EM stillexist. First, applying the EM algorithm to learn DBN parameters is often
subject to local optima and prone to premature convergence which could ultimately lead
to poor solution quality. To rtigate this problem, the authapplied the Agd.ayered
Expectaton Maximization (ALEM)method[56], which is primarily based on the genetic
algorithm concept of creating and computing with a population of randomly initialized
entities See Section 3.7)2Second, as data size increases, learning time of conventional

sgjuential learning becomes intractable. Taigaite this problem, the authapplied the
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ALEM algorithm on the MapRedudastributed computing framework.

3.7.1 MapReduce for Massive Scale Distributed Computations

MapReduce is a programming framework thstributed computing on massive
data sets which was introduced by Google in 2004. It is a paradigm that allows users to
create parallel applications while hiding the details of data distribution, load balancing,
and fault toleranc¢57]. MapReduce requisedecomposition of an algorithm into map
and reduce steps. In the map phase, the inpudasplit into blocksandprocessed as a
set of input keyvalue pairs in parallel by multiple mappers. Each mapper applies to each
assigned datum a ussgpecified map function and produces as its output a set of
intermediate keyalue pairs. Then the values with the sakeg are grouped together
(the sort and shuffle phase) and passed on to a reducer, which merges the values
belonging to the same key according tasardefined reduce function.

Hadoop, an implementation of MapReduce, provides a framework for distributing
the data and useapecified MapReduce jobs across a large number of cluster nodes. It is
based on the master/slave architecture. The single ns&star (jobtracker), receives a
job assignment from the user, distributes the map and reduces tasks to slave nodes
(tasktrackers) and monitors their progress. Storage and distribution of data to slave nodes
is handled by the Hadoop Distributed File Sys(@iDFS). A Hadoop node might denote
a tasktracker or jobtracker machine. A map task describes the work executed by a mapper
on one input split. A reduce task processes records with the same intermediate key. A
mapper/reducer might be assigned multiple nemluce tasks. To learn the parameters

needed to support this research, Hadoop was run on the MITRE ¢lastamtinuously
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growing cluster consisting of both a North and South configuration with a total of 129
data nodes, 1,630 mappers, 732 reducers, @d2opetabytes of storage capacity that do

all the work.

3.7.2 ALEM on MapReduce (ALEMMR)

The ALEM algorithm is based on the genetic algorithm concept of creating and
computing with a population of randomly initialized entitig6]. Each entity has a
y t n evisich js to be optimized, as well as an age corresponding to the amount of time
the entity has been in a populati@8]. Entities are separated in layers with other entities
of like ages. Lower layers have young entities in the genetic algorithm, wiiterhi
layers have the oldest member of the population. As entities age, they ascend to high
layers. The maximum age of each layer is determined by the age gap parameter; once
entities reach this age, they ascend to the next |Agelitionally, there are iits to the
maximum number of entities per layer. The-#aeered structure reduces the possibility
of yt, old entities, stuck in | ocal opti ma,
ytness.

In ALEM, a population of EM runs is created and upddf&]. The age of each
EM run relates to its number of iterations,
EM runs are randomly initialized in tHigst layer, iterate until an age where they ascend
to the next layer, and may need to compete for a isptte next layer. Competition
occurs when a layer is full: if an ascending EM run has greater likelihood, the non
ascending EM run is discarded to make room. Otherwise, the ascending EM run is not

competitive enough and is discarded. ALEM continues angiven number of EM runs
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successfully converge usingaflee yned convergence <criteri
s p e ¢ humbed of EM runs converggs8]. Figure 310 provides a representative
example of how the use of ALEMMR provides the distributed platfoeeded to run a
population of airport DBNs simultaneously.

This study adopts the ALEM MapReduce framework developefb%), and
provides novelty by addressing two important shortfalls of that research: the amount of
evidence available, and how well EMMR scales when the population size grows to
thousand or millions. Using ALEMMR, multiple DBNs are processed for each
operation. For population treatment of EM ruifise., DBN parameters) ALEMMR
terminates and st@rnew DBNs as weks executethe likelihood for thelayersthat are
changing,as illustrated inFigure 3 10. More specifically,each mapper in the -Etep
performs expectationalculatiors on a single evidence set and multiple DBN instances.
The reducethenperforms maximum likelihood estimation and either begins or ends new
EM runs according to the ALEM layers. The added temporal dimensions unique to DBNs
are managed by tim@dexed variables at each observed predidionzon (2 hours
Since ALEM operates on a dynamic population structure, the number of EM runs
performed foreach MapReduce operation will vary based ondafned parameters
Section 4.2.1discusses the addihal parameters required to run ALEMMR that consider

computational time and a global optima.

53

on



Expectation-Step

N

e
]

ATL Data Set -

1
A}
1
\

- - = 'z ~ ’, =
- - - \

ORD Data Set - - { EMm EM
- - ~y - o e
LAX DataSet |-~ - 4 j"-’ o)
- s VT - U
DEW Data Set - Maximization-Step - 7 _— .,\\
| EM  ( EM EM

Time Index: 2 hours

Figure 3- 10 Example of an ALEM application with populations of DBNs on
MapReduce.
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Chapter 4: Empirical Experiments

4.1 Experimental Design
For the DBNused in this study, the author wiagerested in quantifying fouresearch

guestions:

1. By using ALEMMR, can we learn parameters that scale with an increasing data
size while addressing the EM local optima problem?

2. What is the recommended prediction horizon and classification threshold for
delay prediction?

3. Does the flight delay predictiomodel provide accurate prediction results for
delay time and causal variables for each phase of flight greater than 80% of the
time?

4. Can this approachiegrate results of the flight delay predictiGhsuccessful)
into a developed redime trajectory decision support prediction systémat
recommends which route an aircraft should fly given both historical antimesal
flight delay information combined with data related to the aircraft and thenekte

environmen? (previously discussed in Section 3.4)

This experiment presents the prediction results of model runs conducted against more
than three years of fused threaded track data that covered the period August 2010
September 2013 City pairs forall aircraft arriving and departing from the top thifiye

major airports in the NAS were use@s depicted irFigure 4 1) to esimate accuracy;

*Date range of the fused threaded track uploaded on HDFS
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the authorutilized millions of flight records used for parameter learning to obtain the
predicted beliefs of flight delay time and causal delay variables by using the holdout
method. In this method, thdata is randomly partitioned into two independeris,sa
training set andh test set. The training set is thesed todevelopthe model, whose
accuracy is estimated with the test set. 80% of the fused threaded track dataset was for

training, and 20% was used for test data.

Figure 4- 1. Track dispersion using a subset of threaded track historical radar data for
aircraft departing and arriving from the top thiftiye major airports in the NAS.

4.2 Empirical Experiments Overview
This section discusses the resultsnekstigating the three research questiaes (
Section 4.). For the first egeriment, the author appliethe ALEM MapReduce
algorithm to the NASwide airport dataset to quantify both the time (minutes) as the data
set increases and the mean number aditans until global convergence for DBNs with
varying levels of dataset size and hidden/missing data nodes.eFeedbnd experiment,
the authodevelogda confusion matrix that allows visualization of model performance.

In predictive analytics, a corgion matrixreports the number dalse positivesfalse
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