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Abstr act of Dissertation 
 

 

A DATA -DRIVEN SUPPORT SYSTEM FOR AIRCRAFT TRAJECTORY  

PREDICTION IN THE NATIONAL AIRSPACE SYSTEM  

 
Although a recent audit report from the U.S. Department of Transportation shows 

declining flight delays over the last decade, scheduled U.S, passenger airlines still 

accrued 92 million system delay minutes that were estimated to result in $7.2 billion in 

direct aircraft operating costs in 2012. To address these flight delays, the Federal 

Aviation Administration (FAA) is implementing the Next Generation Air Transportation 

System (NextGen) which aims to transform air traffic operations to meet future growth. 

A core component of NextGen is Trajectory Based Operations (TBO), with goals that 

include improving throughput, flight efficiency, flight times, and schedule predictability 

through better prediction and coordination of aircraft trajectories in the National Airspace 

System (NAS). In this research, a novel approach is presented by constructing a Dynamic 

Bayesian Network (DBN) to accurately quantify delay uncertainty for airport origin-

destination (OD) pairs. Since the size of the conditional probability tables (CPTs) grows 

exponentially as the number of variables increase in the DBN, parameter learning was 

developed within the Hadoop MapReduce distributed computing framework. Hadoop 

aids in the mitigation of scaling concerns which significantly reduce the computational 

time necessary for air traffic decision support. Experiments are performed using a fused 

historical aircraft radar dataset that improves on current data limitations to dynamically 

predict the probability of a delay and its causal factor(s) for the strategic prediction 

horizon. The predictive performance of the model is evaluated by focusing on major OD 

pairs in the NAS, and the results show flight delay time was predicted accurately 
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approximately 92% of the time for the two hour prediction horizon. Furthermore, the 

results from the delay model are integrated into a developed real-time trajectory predictor 

that recommends which route an aircraft should fly given both historical and real-time 

flight delay information combined with data related to the aircraft and the external 

environment. This research is the first known attempt that combines elements of systems 

engineering (SE), operations research (OR), and distributed computing concepts to derive 

a data-driven decision support system for air traffic decision makers under operational 

uncertainty.  
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Terms and Definitions 

 

 

The following, are key terms and definitions that are used throughout the study: 

 

¶ Component ï Composed of multiple parts; a clearly identified part of the product 

being designed or produced. 

¶ Element- An integrated set of components that comprise a defined part of a 

subsystem. 

¶ Flight Plan ï A subset of the flight object information used for flight planning 

prior to departure that carries basic information about the flight and route to be 

followed. 

¶ Part- The lowest levels of separately identifiable items within a systemðare not 

normally subject to disassembly without destruction or impairment of designed 

use.  

¶ Program- projects of all sizes and complexity, ranging from a System to its 

individual parts. 

¶ System- An integrated set of constituent parts that are combined in an operational 

or support environment to accomplish a defined objective. These parts include 

people, hardware, software, firmware, information, procedures, facilities, 

services, and other support facets. 

¶ Subsystem- A system in and of itself (reference the system definition) contained 

within a higher level system. The functionality of a subsystem contributes to the 

overall functionality of the higher level system. The scope of a subsystemôs 
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functionality is less than the scope of functionality contained in the higher level 

system.  

¶ Systems Engineering (SE) ï a discipline that concentrates on the design and 

application of the whole (system) as distinct from the parts. It involves looking at 

a problem in its entirety, taking into account all the facets and all the variables and 

relating the social to the technical aspects. 

¶ Traffic Flow Management Initi ative (TFMI) ï techniques used to manage 

demand with capacity in the NAS.  

¶ Trajectory -Based Operations (TBO) ï NextGen Portfolio of research that focus 

on improving throughput, flight efficiency, flight times, and schedule 

predictability through better prediction and coordination of aircraft 4-dimensional 

trajectories (4DT) which consider lateral, longitudinal, time and space dimensions  
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Chapter  1: Intr oduction  
 
 
 
 

1.1 Overview 

Trajectory Based Operations (TBO) is the NextGen concept of improving 

throughput, flight efficiency, flight times, and schedule predictability through better 

prediction and coordination of aircraft 4-dimensional trajectories (4DT) which consider 

lateral, longitudinal, time and space dimensions [1]. TBO uses the 4DT to both 

strategically manage and tactically control surface and airborne operations. Implementing 

TBO effectively requires understanding the interactions and trade-offs between proposed 

TBO decisions, and sources of uncertainty. For TBO and the regional and local NAS air 

traffic controllers it would serve, understanding system impacts and relationships have 

proved difficult for analysts and decision-makers to visualize. The mathematics and 

concepts of stochastic optimal control are suited to detailed analyses, but they are poorly 

suited to providing accessible intuition and explanations to identify TBO characteristics 

and trade-offs. Currently no analytical framework for an integrated understanding and 

measurement of TBO uncertainty for either the strategic (2-15 hours) or tactical (less than 

2 hours) prediction horizon exists- thus stems the importance and high level objective of 

this study. 

A strategic management decision in TBO is to predict the delay time of aircraft that 

are flying from an origin to destination (city pair) airport under operational and 

environmental uncertainty. This study achieves this task by developing a dynamic 

Bayesian network (DBN) model that infers delay time and delay causal variables which 

impact flight time based on a fused set of historical radar track data measurements for 
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given city pairs. Furthermore, this study successfully prioritizes aircraft routes in order to 

aid air traffic decision makers in recommending the best route to take in regard to 

minimizing delay based on historical and real-time data. This is the first step towards an 

application of a data-driven DBN in a dynamic system that can help govern air traffic 

decision makers (ATDMs) implementation of traffic management initiatives, air traffic 

directives, and policies that are currently based on subjective measures. The end state of 

this ongoing research provides a means of decision support in the presence of uncertainty 

for air traffic operational decisions- scaling from a local focus (one airport); to a NAS 

system-wide focus. 

 

1.2 NextGen Explained 

The vision of the NextGen is to build on near- and mid-term (through 2018) systems 

developed by the FAA and other government partners, to improve performance, 

prediction, and capacity of the National Airspace System (NAS) necessary to meet 2025 

requirements [1]. More specifically, NextGen will allow aircraft to safely fly in closer 

proximity on more direct routes, reducing delays and providing benefits for the 

environment through reductions in carbon emissions, fuel consumption and noise. 

Implementation of NextGen will be accomplished through a series of Operations 

Improvement (OI) Increments that provide individual benefits and combine to provide a 

paradigm change in the way the NAS operates. The OI Increments are often 

interchangeable with the term ñcapabilities.ò Related OI Increments are managed in 

seven implementation portfolios [2]. The FAA portfolios include: 
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1. Trajectory Based Operations (TBO) 

2. High Density Airports (HD) 

3. Flexible Terminals and Airports (FLEX) 

4. Collaborative Air Traffic Management (CATM) 

5. Reduce Weather Impact (RWI) 

6. Safety, Security and Environment (SSE) 

7. Transform Facilities (FAC) 

 

The NAS Enterprise Architecture establishes the foundation which evolution of the 

NAS can be explicitly understood and modeled. It helps to provide a framework for 

managing change in the NAS by providing a unifying approach and common language. 

OIs represent distinct functional improvements to the NAS that provide direct benefits to 

the user community. Figure 1-1, illustrates how the NextGen concept can create 

improved capabilities for each flight phase in a typical flight profile.  

 

 
 

Figure 1-1: NextGen 2025 Flight Profile [1] 
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Research activities on NextGen technology development, integration, 

implementation and safety must be accomplished to achieve the benefits mentioned 

above. The interdependencies that exist between TBO implementation portfolio and 

flight delay prediction warrant analysis, not only at the local level, but at the system level 

which prior research fails to efficiently achieve from a computational and accuracy 

perspective [2]. Therefore the model should have an ability to accurately predict not only 

flight delays and causal variables, but also prioritize aircraft routes to and from airports in 

order to aid air traffic decision makers in recommending the best route to take in regard 

to minimizing delay based on historical and real-time data.    

 

1.3 Trajectory Predictor Technology 

The FAA [3] describes Trajectory Predictor Technology (TPT) as the predicted path 

an aircraft will follow through airspace. Aircraft trajectory can be described 

mathematically by a time-ordered set of aircraft state vectors. This computation is 

performed based on input data comprising of the current state and future intent of the 

aircraft. The TPT uses models for aircraft performance, meteorological conditions, and 

airspace adaptation data to perform this computation [3].   

TPT can be incorporated into a client application to support various applications for 

an air traffic based decision support system. These decision support systems will aid in 

providing data, advisories, and recommended resolutions to ATM system. A diagram of 

the typical process flow within a common TPT structure is described in 

EuroControl/FAA Action Plan 16, and is shown in Figure 1-2. The TPT client application 

receives data inputs from adaptation, weather, and aircraft models. The TP application 
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consists of the following four component processes: Preparation, Computation, Update, 

and Export.   

 

Figure 1-2: Trajectory Predictor Technology- Process Flow  [3] 

 

1.3.1 Trajectory Predictor Processes 

The preparation process in [3], constructs initial conditions and a Behavior Model 

that outputs a list of aircraft movements. Specifically, the Behavior Model details how an 

aircraft will meet trajectory constraints within the user-specified criteria. As described in 

[3], the following are three critical processes within the preparation process that aid in the 

development of a simulated aircraft trajectory: 

 

¶ State Processing: The State Processing generates the Initial Conditions for 

trajectory generation.  

¶ Flight Intent Processing: Flight intent processing operates on a Behavior Model, 

or if the Behavior Model is not defined, it will create one from the Initial 
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Conditions and Flight Intent. The Flight Intent processing evaluates the Initial 

Aircraft State, both laterally and vertically, against the set of constraints defined 

in the Flight Intent. The output of the Flight Intent is comprised of the Initial 

Conditions and the complete set of constraints that must adhered to during 

trajectory generation.  

¶ Behavior Model Generation: The Behavior Model consists of ordered lists of 

maneuvers that the aircraft will perform to meet the trajectory constraints. The 

Behavior Model is internal to the TP and is built from the Initial Condition and 

Flight Intent information. 

 

The computational process calculates the predicted trajectory based on the predefined 

Behavior Model. The update process monitors the conformance of the computed 

predicted trajectory. The update process checks to see if the computed trajectory is in 

conformance with the trajectory constraints specified in the Input Flight Intent. When the 

trajectory is out of conformance, the Update process will re-compute the trajectory using 

the updated Behavior Model and/or Flight Intent data.  

Finally, the export process distributes the TP results to client processes. These client 

processes will receive predicted trajectory data, error messages associated with the data, 

and an updated Behavior Model when the trajectory does not match all the predefined 

constraints. The export process sends its results to the output clients. These results 

include the current predicted trajectory, an updated Behavior Model, and any relevant 

error messages.  
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1.3.2 Trajectory Predictor Data Flow 

Figure 1-3 depicts a diagram of a typical data flow a TP deployment starting from the 

client inputs to the predicted trajectory (client output). Client inputs for a TP include: 

¶ Aircraft State:  The Initial Aircraft State represents the aircraft state data at the 

start of the trajectory computation cycle and is composed of, but not limited to, 

the 3D aircraft position and associated time.  

¶ Flight Intent:  Flight Intent is the element of the Flight Object that contains the 

constraints and preferences applicable to the flight. It describes aircraft, airport, 

and airspace constraints and operator preferences.  

¶ Behavior Model: The Behavior Model contains a list of maneuvers that describes 

how the aircraft intends to satisfy the trajectory constraints and user preferences.  

¶ Processing Strategies and Configuration Control: The Processing Strategies 

specifies how the predictor will conform to the constraints and preferences 

identified in the Flight Intent. The Configuration Control defines processing 

characteristics such as aircraft performance models and the functionality of the 

integration and export functions. 

 

The research and methods proposed in this dissertation focused on enhancing the 

flight intent element within the trajectory preparation process that influences the 

behavior model and provides the TP with the intended maneuvers that in turn creates 

the predicted trajectory. In addition, this research focused on choosing the correct 

method that would provide the functionality to iteratively learn aircraft intent and 

behavior over time. The specific application for this research both prioritizes aircraft 
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routes and predicts both the flight delay time and causal reasons in order to aid air 

traffic decision makers in recommending the best route to take in regard to 

minimizing delay based on historical and real-time data.  

 

 

Figure 1-3: Trajectory Predictor Technology- Data Flow [3] 

 

1.4 Statement of the Problem 

A challenge for flight delay prediction is the difficulty of transitioning research 

concepts into systems and operations. One important aspect of this challenge ties to the 
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range of operational variations for which we develop our concepts and systems. Early 

research concepts are conceived with too few of the real-world variations taken into 

account mostly due to either limitations of computational power or operational 

knowledge [1]. In a program needing to make system trade-offs for development, 

promised benefits must reflect a broader range of routine and reasonable behaviors than 

in research ï but such trade-offs can be quite difficult to quantify, and it is difficult to 

reflect the full range of operational events. 

In contrast, the operational world embodies everything that the real-world throws at 

us. This is where complexity and unpredictability conspire to demonstrate how poorly 

our concepts and systems and procedures can fare when confronted with things we didnôt 

expect in research or in development. The operations world is not just reasonable and 

routine: it is the entire gamut of everything that happens whether weôve anticipated it or 

not. 

A big distinction between these worlds and one that often impacts modernization and 

transition to concepts like flight delay prediction is how predictable the world is that our 

concepts or systems or operations have to deal with. Limits to predictability and 

challenges to transition are both addressed if we focus more closely on uncertainties in 

operations by developing a framework that enhances understanding of the impacts of 

uncertainty and the quantitative relationships between uncertainty factors. Figure 1-4 

depicts a graphical representation detailing the challenge researchers typically endure 

when attempting to model a traditionally stochastic environment. 

 



 

10 
 

 

Figure 1-4: Research Environment Complexity 

 
 

A second challenge involves having better quality data from historical sources about 

the aircraft and its environment, and using that information to improve ATDMs 

prediction at a more granular level that recommends which route an aircraft should fly 

given both historical and real-time flight delay information. Researchers can factor in the 

type of aircraft, the lateral path, and make pretty good predictions; however, there are 

many factors that might happen during a flight that are not very predictable along with 

data quality issues along the way- and these represent some of the challenges. 
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Figure 1- 5: Predictability challenges for airport and en-route delay factors. Not all delay 

factors are included. 

 

As shown in [4], there are a number of causal delay factors that interfere with 

flight predictability.  Some of these can be addressed through better standards or shared 

planning, and others can be predicted to some degree and compensated for. Others, 

though, are simply unknowable until they occur.  Things like a Flight Management 

System (FMS) issue that requires the aircraft to fly slower than expected, or an 

unpredicted thunderstorm en-route, or a traffic flow management initiative (TFMI) 

restriction (See Terms and Definitions) that is issued at the last minute due to a 

temporarily blocked runway at the destination airport. Figure 1- 5 depicts a visual 

representation of some of the more common challenges in flight delay prediction. In 

truth, there are a nearly infinite number of factors that might happen that are not very 

predictable ï and these represent challenges to the development of any air traffic-based 

model [5]. 

As a result of these challenges, the research performed in this dissertation 

combined the best practices in trajectory and flight prediction to create a new data-driven 
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decision support tool. This tool combines more data (both historical and real-time) about 

the aircraftôs behavior, the aircraft operatorôs intent, and the external environment than 

preceding researchers and provides decision support applications that can be used by 

succeeding researchers to build off of.     

 

1.5 Research Importance and Objectives 

The objectives of this research focused on developing the big data-driven DBN 

development to represent and predict flight delay and the associated causal and temporal 

nature of delay uncertainty based off a novel fused historical dataset. This research can be 

broken down into the following sub-objectives: 

 

1. Develop a Dynamic Bayesian network (DBN) structure for the air traffic domain 

that can continuously be developed to answer complex operational questions. 

2. Learn DBN parameters from a fused set of aviation data on a big data parallel 

computing platform that could not be computationally achieved using 

conventional approaches. 

3. Determine the optimal prediction horizon and classification threshold (See 

Experiment 2: Varying the Measurement Rate) for the flight delay prediction 

model. 

4. Provide accurate prediction results for both delay and delay causal variables 

greater than 80%
1
 of the time.  

5. Integrate results of the flight delay model (if successful) into a developed real-

                                                 
1
 ул҈  ǇǊŜŘƛŎǘƛƻƴ ŀŎŎǳǊŀŎȅ ǘƘǊŜǎƘƻƭŘ ǿŀǎ ǘŀƪŜƴ ŦǊƻƳ ŀ ƎŜƴŜǊŀƭ ƛƴǘŜǊǇǊŜǘŀǘƛƻƴ ƻŦ  ǘƘŜ C!!Ωǎ 

model/simulation standards and aligns with the 95th percentile of accuracy results from related prior art.   
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time trajectory predictor that recommends which route an aircraft should fly given 

both historical and real-time flight delay information combined with data related 

to the aircraft and the external environment (ñother dataò discussed extensively in 

Section 3.4). 

 

1.6 Research Scope  

Because air traffic research (specifically flight delay) integrated with big data 

technologies (such as Hadoop) are still in its early stages, there are not many models of 

this nature being proposed currently. For that reason, this study does not try to directly 

compare the accuracy of the proposed model against other existing models. Rather, the 

scope of this research centers on creating a new approach to scale probabilistic graphical 

models (specifically) to a computational scale that has never been performed on based on 

the authorôs literature review.  

 

1.7 Dissertation Organization 

This dissertation is organized as follows. Chapter 2 is the literature review on relevant 

prior research to set the stage for the research effort and identify why DBNs were ultimately chosen 

for this research. This chapter also takes a granular look at both trajectory and flight delay 

prediction in independent sub-sections in order to portray these as two different topics (as 

current researchers typically do) which this research aimed to bring together. Chapter 3 

covers necessary background knowledge, the development of the big data driven DBN 

methodology and stated sub-objectives. Chapter 4 validates the model based on empirical 

experiments focused on both prediction accuracy and the intelligibility of the prediction 
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for flight delays, associated delay causal variables, and route trajectory. Chapter 5 

provides conclusions and further research recommendations. 
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Chapter  2: L iterature Review 

 

 

2.1 Overview 

Numerous journal articles have been published on methods for trajectory and flight 

delay prediction of uncertainty in the NAS. In this chapter, some of the key studies related 

to the authorôs research are highlighted. All  of the researchers focused on using some 

type of mathematical or statistical model in order to predict aircraft trajectory and 

environmental factors in a particular phase of flight. Some of the researchers attempted to 

gain insight into flight delay prediction using the computed trajectory prediction.  

 

2.2 Trajectory Based Operations Research 

2.2.1 Mathematical Models in Trajectory Prediction 

 

As discussed in Section 1.3, there are four components for the trajectory prediction 

process. Of the four, this section will focus on the computation subfunction. The 

preparation process brings together all the data necessary for the execution of the 

trajectory prediction. Further, it is this process that is responsible for the translation of the 

intent script (which this research develops) into the mathematical code used to perform 

the computations. The update process ensures compliance with the aircraft intent or flight 

plan and flags potential loss of spatial/temporal separation (for example) with other 

trajectories. It is within the scope of this process to alter the intent script and behavior in 

an attempt to regain airspace separation compliance. The export process returns the 

resulting trajectory to the ground-based computer hosting the flight object. Because of the 

diversity of the modeling equations, different state variables will be exported to update 



16 

 

 

the flight object. It should be noted that the abstraction dictates that, at a minimum, the 

trajectory should be comprised of four dimensions (lateral, longitudinal, time and space 

dimensions) and the geodetic coordinates of the aircraft for the duration of the prediction 

time frame. It will be seen that only one of the many papers referenced complies with this 

requirement. Furthermore, some of the papers do not operate in full three dimensional 

spaces. 

The mathematical models under study fall into one of the following classifications:  

 

Point-Mass models: The majority of the identified research [6-17] used point mass flight 

estimation models. This feature manifests the tendency toward more realistic modeling of 

flight, but lacks the complexity of the kinetic model in that rotational moments are 

ignored. The range of complexity varied greatly within this subset of papers. Point-mass 

models signify that aerodynamic equations are in play with the above notable exception. 

 

Kinematic Models: In these models [18-20], only position and time rate of changes are 

modeled. The model is integrated forward with respect to time, acceleration to velocity, 

etc.  

 

Kinetic Models: One paper [21] in the set included moments and, therefore is classified 

as full, kinetic models. Although this model represents the ultimate complexity of this 

subset of documents, it is listed second to point-mass models due to the overwhelming 

number of papers that used point-mass models.  
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2.2.2 TBO Uncertainty Analysis 

Uncertainty in aircraft trajectory prediction has been studied in Federal Aviation 

Administration (FAA)/Eurocontrol Action Plan 16 [3], which describes and quantifies 

major sources of variation in end-to-end timing including departure timing, wind-field 

prediction, flight intent, and flight parameters such as aircraft weight. Gaydos [4] 

examined statistical uncertainty at different look-ahead times, and found that uncertainty 

grew more quickly or more slowly at different points along similar trajectories in en-

route. Earlier work by Tino, Ren and Clarke [22] explains some of this spatial variability 

as wind behavior, which also creates increasing uncertainty in timing at longer look-

ahead times. Mondoloni and Liang [23] described how variations due to wind observed 

along a trajectory can be used to reduce uncertainty and improve predictability and 

timing control during the remainder of the trajectory. However, as Rentas, Green, and 

Cate have proven [24], characterizing NextGen TBO uncertainty impacts is far from 

mature and more research into the causal and temporal relationships of trajectory 

predictors is warranted. 

2.2.3 TBO Summary 

To recap, the research identified in this literature review focused first on the 

mathematical models used to develop an aircraft trajectory and ensuing applications of 

the developed trajectory with regards to uncertainty. In this research, the author has 

chosen a point mass model for the computation subfunction (See Figure 1-3) based on 

results from the aforementioned research. Refer to experiment four (Section 4.2.4), for a 

more in depth description on how this comes together with the rest of the research.    
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2.3 Flight Delay Research 

2.3.1 Statistical Methods  

Historical approaches to learn and predict flight time delay and the associated causal 

factors of delay can be categorized based on their use of either statistical linear and 

nonlinear methods . The first approach in [25] and [26], use linear regression methods to 

explain the influence of causal factors of delay. This approach does provide statistical 

accuracy; however it has shortcomings, which include: 1) failure to include relevant 

operational and environmental factors, 2) incorrect data independence assumptions, and 

3) sensitivity to outliers which together- minimize its predictive power. 

Vigneau [27] studied both delay and delay propagation from flight segment to 

segment using conventional regression techniques. In Vigneauôs model, departure delay 

depended on arrival delay from the previous segment, which then depended on the 

departure delay from the previous segment. Time dimensions, airport capacity and load-

based factors were significant factors that were identified as influencing delay. The 

model, however, was not applicable in the US because it treats bad weather as an 

exception. In Europe, only 1~4% of delay can be attributed to bad weather, whereas in 

the United States 70~75% of delay is due to bad weather [28]. 

 

2.3.2 Neural Networks 

A neural network is typically referred to as a ñblack boxò model that can be used to 

predict departure delay from a set of input factors. The parameters of a neural network 

model are not easily interpretable, and thus it is difficult to use a neural network model to 

gain a comprehensible understanding of how the factors interact to cause delay. Dai and 
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Liou [29] developed an artificial neural network model to estimate individual flight 

departure delay for the application of real time air traffic flow management. The network 

incorporated 70 nodes in the hidden layer and was shown to outperform linear and non-

linear regression methods with their chosen dataset. The primary factors influencing 

delay in this study were airline, aircraft type, time of day, day of week, route, flight 

sequence and traffic flow.  

Jehlen et al [30] developed a neural network model for predicting weather-related 

aircraft delays and cancellations at the national, regional, and airport levels. The network 

proved to slightly improve on traditional linear regression methods for predicting 

airspace metrics such as total aggregate delay, arrival delay, airborne delay, and flight 

cancellations at different scales; however, the lack of generalization that a neural network 

provides to understand causal delay interactions for wide-application stakeholder use is 

still absent.   

 

2.3.3 Hidden Markov Models 

HMM models a first-order Markov process where the observation state is a 

probabilistic function of an underlying stochastic process that produces the sequence of 

observations. The underlying stochastic process cannot be observed directly, it is hidden. 

Both the hidden and observation states are modeled by discrete random variables as 

shown in Neogiôs work where he and his colleagues used HMMs to detect mode changes 

in aircraft flight data for conflict resolution [31]. 

The HMM formalism first appeared in several statistical papers in the mid-1960s, 

but it took over ten years before its utility was recognized. Initially, the use of HMMs 
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was a great success, especially in the fields of automatic speech recognition (ASR) and 

bio-sequence analysis. Because of its success, the use of HMMs in ASR is still dominant 

nowadays, despite its lack of consistent performance [32]. 

One of the main problems of HMMs is the fact that the hidden state is represented 

by a single discrete random variable. DBNs are able to break down the state of a complex 

system into its constituent variables, taking advantage of the sparseness in the temporal 

probability model. This can result in exponentially fewer parameters. The effect is that 

using a DBN can lead to fewer space requirements for the model, less expensive 

inference and easier learning. 

 

2.3.4 Kalman Filters 

A KFM is a HMM with conditional linear Gaussian distributions [33]. It is 

generally used to solve uncertainty in linear dynamic systems. The KFM formalism first 

appeared in papers in the 1960s [34], and was successfully used for the first time in 

NASAôs Apollo program. Nowadays, it is still used in a wide range of applications. The 

KFM formalism assumes the dynamic system is jointly Gaussian. This means the belief 

state must be unimodal, which is inappropriate for many problems. The main advantage 

of using a DBN over a KFM is that the DBN can use arbitrary probability distributions 

instead of a single multivariate Gaussian distribution. 

In application, Reference [12] reported on real data testing of a real-time freeway 

traffic state estimator, with a particular focus on its adaptive capabilities. The pursued 

method to the real-time adaptive estimation of the complete traffic state in freeway 

stretches or networks is based on stochastic macroscopic traffic flow modeling and an 
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extended Kalman filter. Advantages are demonstrated via suitable real data testing. The 

achieved testing results are both acceptable and promising for succeeding applications 

but the author specifically mentions the lack of generalizability constraints when working 

with Kalman filters- which DBNs compensate for. Other research efforts [36] and [37] 

use Kalman filters to estimate time of arrival based on a trajectory prediction technology.  

 

2.3.5 Bayesian Networks 

Bayesian networks have been applied to various scenarios within the air traffic 

domain because of their ability to provide approximate models for complex, and/or 

poorly understood problems. Pepper, Mills, and Wolcik [38] presented a method of 

accounting for uncertain weather information at the time of traffic flow management 

(TFM) decisions, based on Bayesian decision networks. They found that the data from 

past TFM events was not sufficient to distinguish between strategic TFM decisions, in 

terms of metrics based on overall delays, cancellations, diversions, and departure 

backlogs. However, the results did show that useful information can be extracted from 

data on past TFM events by focusing on specific elements of the strategic TFM process 

rather than the entire process comprehensively. From this research, it was imperative that 

both tactical and strategic levels of TFM were considered in the proposed model. 

Ning et al [39] used Bayesian networks to estimate delay with a focus on 

investigating and quantifying how flight delays from a single airport propagate to impact 

other airports. Specifically, their methodology combined multiple individual-airport 

Bayesian network models into a system-level model capable of representing interactions 

between airports. Their study demonstrated that integrating human judgment with 
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statistical analysis in structure construction and parameter estimation can improve 

prediction accuracy. To simplify their calculation, the model only takes into account 

weather effects and flight cancellations. Their model didnôt take into account many 

factors which can affect delay such as demand, en route variables, and aircraft type (to 

name a few)- which are accounted for in this study. 

Liu and Ma [40] developed a flight-delay and delay propagation model based on 

Bayesian networks. They trained the network with real data using the Expectation 

Maximization (EM) algorithm and analyzed the influences from delay under different 

states.  

 

2.3.6 Dynamic Bayesian Networks   

A BN is useful for problem domains where the state of the world is static. In such a 

world, every variable has a single and fixed value. Unfortunately, this assumption of a 

static world is not always sufficient. A dynamic Bayesian network (DBN), which is a BN 

extended with a time dimension, can be used to model dynamic systems [41]. While there 

was no identified research on DBNs within the specific scope of this research, the author 

chose DBNs due to their successful applications in other fields specifically in creating 

prognostic decision support systems for medical diagnosis of diseases as shown by [42-

44]. These researchers provide the needed proof to show that DBNs have become the 

representation of choice because they embody a good tradeoff between expressiveness 

and tractability. Figure 2-1 depicts the benefits of DBNs from both a knowledge 

representation and reasoning perspective. Through its structure and its parameters, a 

DBN comprehensively describes what is known about a particular domain and aims to 
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establish the interactions of all the variables contained within that domain. As such, a 

DBN can be referred to as a ñPortable Knowledge Formatò that can succinctly and 

compactly communicate the state of the domain as well as its dynamics over time.  

  

 

Figure 2- 1: Benefits of DBN for Decision Support
2
 

 

2.4 Literature Summary  

A review on both trajectory prediction and flight delay research has been explored in 

this literature review regarding the prediction of flight delay in combination or 

independent of trajectory based operations uncertainty. The DBN formalism in this 

research is the first development in temporal reasoning under uncertainty for the defined 

scope of this research. Literature has shown that DBNs can have some significant 

                                                 
2
 Figure taken from: bayesia.com  
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advantages over the aforementioned algorithms. In terms of state-space models, HMMs 

and KFMs are really limited in their expressive power. In fact, it is not even correct to 

call HMMs and KFMs other techniques, because the DBN formalism can be seen as a 

generalization of both HMMs and KFM and can be iteratively updated with the 

incorporation of data sources and subject matter experts in the field as will be described 

in succeeding sections.   
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Chapter 3: Development of Flight Delay Model 

 

 

3.1 Overview 
 

The ensuing chapter describes the steps towards the design and implementation of 

an aircraft flight delay model; a DBN for aircraft flight delay prediction and the 

associated causal delay factors. A general overview of the background knowledge 

required and the methodology for the DBN are shown in Figure 3-1. 

 

 
Figure 3-1: Background and overview of steps for modeling delay prediction with a 

DBN 

 

3.2 Background Knowledge 

 To understand the advantages of using DBNs as the formal basis for prediction of 

flight delay, it is important to first establish a formal definition of flight delay. According 

to the FAA, a flight can be considered as delayed if the operation takes place 15 minutes 

after scheduled pushback [45]. In this work, the author adopts the definition of [46] [47] 

and defines delay as the time difference between real and scheduled departure and arrival 

time.   
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3.2.1 Actor Interactions in the National Airspace System 

To develop a robust delay model, it is imperative to first understand the actors 

that interact in the National Airspace System (NAS) and the time horizons in which 

decisions are required. Figure 3-2 depicts an abstract view of the model interactions 

between an aircraft (flight crew) and two ATDMs (traffic flow management and air 

traffic control) in terms of how ATDMs make decisions about flight planning, and a 

decision model of how a flight crew responds. Specifically, as the aircraft flies from one 

state to the next, the factors that typically affect where the aircraft will be in the next state 

are the current flight plan said aircraft is following, current weather conditions that may 

affect the lateral path, and other delay risk factors occurring either en-route or at the 

arriving airport as noted in Section 1.4. The goal is to predict the duration of flight time 

delay as the optimal minimization factor in order to provide the basis to change the 

aircraftôs route in real-time which is referred to in Figure 3-2 as ñNAS Treatments.ò Used 

as an example, if an aircraft is flying from airport A to airport B and no risk factors are 

triggered, then the aircraft should get to its destination on the same flight plan route it 

departed from; however, if an aircraft is flying from airport A to airport B and weather 

requires the aircraft to change its route path, this research recommends which route an 

aircraft should fly given both historical and real-time flight information. This suggests 

that the intent under which each actor operates must be known and the DBN model is 

used to quantify this intent and continuously update it based on new information.  
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Figure 3-2: An abstract representation of decision making 

 

The actors who affect the way a flight is planned and executed as defined in [1], are 

listed below with their respective primary functions:  

¶ Flight Crew (FC): has ultimate control and responsibility for the safe operation of 

the aircraft; 

¶ Air Traffic Control (ATC): provides a safe, orderly, and expeditious flow of traffic 

on a first-come, first served basis- often operating in the tactical decision space (< 2 

hours look-ahead time); 

¶ Traffic Flow Management (TFM): balances air traffic demand with system 

capacity to ensure the maximum utilization of the National Airspace System 

(NAS) often operating in the strategic decision space (2-15 hour look-ahead time). 

 

3.2.2 Delay Prediction Horizons and Classification Thresholds 

For this study, four different prediction horizons were analyzed: 2, 4, 6, and 24 
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hours for delay prediction in the strategic planning phase which, if accurate, benefits all 

mentioned actors. In other words, the prediction horizon denotes the predicted delay after 

2, 4, 6, and 24 hours from the initial time
3
. Additionally, a classification threshold 

prediction mechanism was established, where the output is a binary prediction of whether 

the delay is more or less than a predefined threshold. This study tests four delay 

classification thresholds: 0-30, 30-60, 60-90, and > 90 minutes.  

 

3.2.3 Dynamic Bayesian Networks 

DBNs expand on conventional Bayesian networks because they offer the ability to 

represent the temporal nature of a process or system well. Additionally, the DBN model 

provides the ability to learn from statistical data, relevant literature, and operational 

expertise, while also providing a causal approach to modeling. 

According to [48], Bayesian networks represent the state of certain phenomena at an 

instant in time. A Bayesian network B = (G,P) is a pair where G is an directed acyclic 

graph (DAG), with nodes corresponding to a set of random variables X, and P is a joint 

probability distribution (JPD) of variables in X, which factorizes to: 

 

 

Where ˊ(X) are the parents of X in G. A JPD representation by a Bayesian network 

typically decreases the number of parameters that are needed for estimation and 

ultimately enables efficient probabilistic inference. However, in many applications, the 

goal is to represent the temporal evolution of a certain process, that is, how the different 

system variables evolve with time(t) or event, by reasoning over random processes X = 

                                                 
3
 Initial time is established for this research to be at 6am Eastern Time since commercial traffic activity 

throughout the NAS is at its lowest volume in the hours preceding. 

                          P╧ Б Ἔἦ Ⱬ╧●ɴ╧                                                          

 

(1) 
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{X( t) : t Ў T}, instead of random variables. Extensions of BNs to model these processes 

are called dynamic Bayesian networks (DBNs) [15]. DBNs assume that the Markov 

property holds, which states that the future is independent of the past, given the present; 

therefore, the following factorization is obtained: 

 

 

Where X (t) = {X ( t): X ắ X}.  

 

Given a potentially infinite time horizon, the specification of a discrete-time DBN 

may be prohibitive due to data scaling concerns. In order to allow for a compact 

specification the following assumptions regarding DBNs are generally made:  

 

¶ The DBN is first-order Markovian: 

 

 

such that the future is independent of the past given the present time. 

 

¶ The DBN is time-invariant: 

 

 

such that the same independence relations hold at each point in time for U, V, Ṗ  X and t, 

u, s, t + c, u + c, s + c, ắ T.   

(2) 

╧◄ ▬ ╧◄ ȿ ╧◄ (3) 

╤◄ ▬╥◊ ╦ ▼ᵾ╤◄ ╬ ▬ἤἽ Ἣ ἥ Ἳ Ἣ (4) 
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¶ The DBN is homogeneous: 

 

 

such that transition probabilities are fixed for U, V Ṗ X and t, tô, t + c, tô + c ắ T. In other 

words, As the DBN goes from one state to another; structure of the DBN remains the 

same from start to end.  

Given these assumptions for each temporal slice, a dependency structure between 

the variables specifying the initial distribution of the joint process can be developed, 

called the prior model. It is usually assumed that this structure is duplicated for all the 

temporal slices (except the first slice, which can be different). Additionally, there are 

edges between variables from different slices specifying how the process evolves as time 

goes from t to t + 1 for t ắ {1,2,é}, which defines the transition model. In this model, 

variables at time t are depicted by dashed objects, while variables at time t + 1 are 

depicted by solid objects. The temporal foundation in application is depicted by the 

choice of the prior and transition model, while causal knowledge, such as the belief that a 

traffic flow management initiatives (TFMI) causes an air traffic directive (ATD) (i.e. air 

traffic controller command to pilot), and the influence of a Traffic Flow Management 

initiative (TFMI) and ATDs on aircraft flight delay time (i.e. delayed >30min, >60min, 

etc.) is captured as well. Figure 3-3 depicts an abstract example of a DBN, where the 

influences between aircraft flight time delay, TFMIs, and ATDs are depicted by a prior 

transitional DBN model. For example, if Traffic Flow Manager sets a NAS initiative to 

delay aircraft on the ground and/or in the air due to en-route weather, this gets forwarded 

to air traffic facilities and the air traffic controller takes necessary action by providing 

╟╤◄ ╬ȿ╥◄ ╟◄ ╬ȿ╥◄  (5) 
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directives to slow down or divert aircraft off their intended lateral flight plan path. This in 

turn, creates a flight delay for the aircraft going from airport A to airport B. Figure 3-3 

aims to depict this abstract process in order to introduce how a DBN which treats this 

scenario from one state to the next.  

 

 

Figure 3-3: Abstract example of DBN that represents the influences between NAS actors 

 

In this study, the author extends the prior-transition DBN standard, and develops an 

extended formalism (see Section 3.5) that provides more modeling power and improves 

performance in terms of execution time and memory usage. 

 

3.3 Problem Domain 
 

Prior to the development of an effective DBN, it is necessary to formulate a concise 

and explicit problem description. It is also essential to constrain the domain of the 

problem in order to control under which conditions the model may be applicable. 

The primary objective in this research is improving prediction support in the NAS as 

it pertains to aircraft flight delay and route planning. A system such as the NAS may 

include software, hardware, people, information, physical infrastructure, services, and 
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other system support items [2]. Figure 3-4, depicts the developed system hierarchy that 

breaks down the NAS for the problem domain.   

 

Figure 3-4: Problem domain system hierarchy 

 

The following are definitions extracted from [2] for succeeding levels within the 

system/subsystem hierarchy taken, as well as the specific entity description used for this 

research purposes. Keep in mind, these are assumptions used for the particulars of the 

research at hand and can be altered based on the overall scope of the analysis. For 

example, if a more granular analysis is required, the main system could in fact be the 

airport and subsystem being the all elements specific to said airport.  

 

¶ System- An integrated set of constituent parts that are combined in an 

operational or support environment to accomplish a defined objective. 

These parts include people, hardware, software, firmware, 



33 

 

 

information, procedures, facilities, services, and other support facets. 

o Description: The NAS is the higher level system in our 

empirical scenario. 

¶ Subsystem. A system in and of itself (reference the system definition) 

contained within a higher level system. The functionality of a 

subsystem contributes to the overall functionality of the higher level 

system. The scope of a subsystemôs functionality is less than the scope 

of functionality contained in the higher level system. 

o Description: An airport or set of airports are the subsystems, 

since by definition, airports are ñless thanò the scope of the 

NAS.  

¶ Element. An integrated set of components that comprise a defined part 

of a subsystem. 

o Description: Since the primary focus of this objective is to 

provide prediction support, our elements include the type of 

elements that we are interested in predicting (e.g. flight delay 

prediction, traffic flow management prediction, and airport 

capacity prediction).  

¶ Component. Composed of multiple parts; a clearly identified part of 

the product being designed or produced. 

o Description: In order to predict the element flight delay (for 

example), we will need to identify multiple nodes or attributes 

that have causal relationships. In this case, since a DBN was 
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used, the author used this level for the multiple nodes for each 

element. 

¶ Part. The lowest levels of separately identifiable items within a 

systemðare not normally subject to disassembly without destruction 

or impairment of designed use. 

o Description: At the lowest level, the time dimension will be 

used as segmentation for the NAS. Since the main actor for 

prediction is based on the aircraft, time can be broken out into 

parts to provide prediction at a particular phase of flight (e.g. 

ground departure, ascent, cruise, descent, ground arrival).  

 

Uncertainty in this study is characterized based on behaviors in a population of 

flights with the same origin and destination. The uncertainty associated with the delay 

variables is roughly a function of the data that is being used to produce the delay and 

route prediction. Table 3- 1 lists each category of variables that are utilized for the model 

separated by fixed and temporal variables. Fixed data are categories of variables that have 

only one value over the duration of the prediction horizon. Temporal data are categories 

of variables having a value for each prediction horizon i. 

 

Table 3- 1: DBN Fixed and Temporal Categories of Input Variables 

Fixed Categories 

Code Wording 

AcChar Aircraft Characteristics (e.g. model type, airline) 

CityP Multiple origin to single arriving or departing airport 
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Fixed Categories 

Code Wording 

Season Season (day-of-week, month-of-year) 

DepGD Departure Ground Delay time 

AirbD Airborne Delay time 

ArrGD Arrival Ground Delay time 

CdDepGD Causal departure ground delay factors 

CdAirbGD Causal airborne ground delay factors 

CdArrGD Causal arrival ground delay factors 

DTResult Delay time prediction 

Temporal Categories 

Code Wording 

SchTra Scheduled Traffic at time i 

LatPthi Lateral path of ATC sectors traversed at time i 

DepGDi Departure ground delay at time i 

AirbGDi Airborne delay at time i 

ArrGDi Arrival ground delay at time i 

CdDepGDi Causal ground departure delay factors at time i  

CdAirbGDi Causal airborne delay factors at time i 

CdArrGDi Causal ground arrival delay factors at time i  

DTResulti 
Delay classification threshold (0-30min,30-60min,60-90min, 

>90min) prediction probability at time i 

 

 

3.4 Data Processing 

Previous research into delay prediction [49] [50] used the FAAôs Aviation System 

Performance Metrics (ASPM) database for input data to provide the delay picture. While 

ASPM provides detailed data on flights to and from airports, it lacks robustness as it only 

provides this data for 77 airports, 22 carriers, and some VFR (visual flight rules) traffic. 

For this study, a more robust data source was utilized by using aircraft radar track data 

from MITREôs Center for Advanced Aviation and System Development (CAASD), 

otherwise known as Threaded Track. Threaded Track fuses a range of radar position 

coordinates (lat, lon) throughout the flight into a single synthetic trajectory by applying a 
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series of noise attenuation algorithms [51]. These sources include the National Offload 

Program (NOP), Airport Surface Detection Equipment System (ASDE-X) and Enhanced 

Traffic Management System (ETMS) data.  

ETMS provides the lowest quality position source updating at approximately one 

minute intervals and is utilized only to fill gaps. NOP data used within Threaded Track has 

three different formats: NOP-Center which provides position reports during the En Route 

phase of flight; NOP- Automated Radar Terminal System (ARTS) and NOP-Standard 

Terminal Automation Replacement System (STARS) contain Terminal Radar Approach 

Control (TRACON) position returns for the flights with those specific automation systems; 

and ASDE-X data provides one second update rate positions on the airport surface and in 

the immediate area around the airport. 

For this study, the author leveraged and built on a MITRE developed data analysis 

project that centers on the fusion and post-processing of the threaded tracks with relevant 

external data sources. Although ASPM was one of the sources used to provide the flight 

delay story integrated with threaded track, an algorithm needed to be developed to fill in the 

gaps. The author developed a óphase-of-flightô post-processing algorithm that takes the time 

series points of threaded tracks, partitions phase of flights based on the radar source and 

aircraft horizontal or vertical characteristics, and tags the phase of flight from beginning to 

end. Figure 3-5 depicts an example of how Threaded Track stitches sources of aircraft 

position data to provide an accurate single-source gate-to-gate record of the position of the 

flight along with a visual depiction of how the phase of flight post-processing algorithm 

would partition and tag the data for each flight segment.      
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Figure 3-5: Threaded Track gate-to-gate flight data sources used for each phase of flight. 

 

 

The data processing steps performed to create threaded track are depicted in Figure 3-

6 and are thoroughly described in the following sub-sections.  
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Figure 3-6: Data Processing Steps. 
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3.4.1 Data Segmentation 

 The NOP and ASDE-X data source are stored in a text format with one row per 

radar return. Although a track identification (OD) column is present in each of the data 

sources, the ID values are recycled within each air traffic facility and therefore do not 

uniquely identify with a track. The segmentation process groups related radar returns into 

segments, and assigns a unique segment ID to each group of returns. This process is 

designed to avoid merging two flights whenever possible, and minimize the possibly of 

splitting a single flight into multiple segments. 

 This process uses different criteria for assigning points to a segment depending on 

the data source. The process begins by grouping the returns by air traffic facility, date, 

and source-assigned track ID. The groups of points are then sorted by ascending time. 

After the points are grouped and sorted, the segmentation criteria are applied to each 

point in turn, and points within a segment are assigned the same segment ID. The 

segmentation criteria are specified by Equations 6-9.   

 

 
 

Equation 6 is used in the segmentation logic to ensure that two successive points 

in a segment are temporally close. The longer update period in NOP en-route data 

requires a looser time-bound between successive points.  

 

 
 

(6) 

(7) 
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Equation 7 is the lateral distance check which was developed to ensure that two 

successive points are within a reasonable distance of one-another. Successive points that 

fail the distance check occur most often when a track ID is recycled by a tracker.  

 

 
 

Equation 8 is the flight information check used for NOP en-route records. This 

was developed because the computer ID is commonly duplicated among tracks within an 

air traffic facility. The flight information check was developed to use the beacon code 

and aircraft call-sign information along with the computer ID to group points together. 

Any two successive points in a segment must agree on at least two of the three fields.  

 

 
 

Equation 9 describes the rules used to assign pairs of successive points to a 

segment. For ASDE-X data records, successive points that share a track ID are 

considered to belong to the same segment if they have the same Mode-S value, and pass 

the time check. NOP, STARS, and ARTS records must pass the lateral distance and time 

checks, NOP en-route records must additionally pass the flight information check.  

(8) 

(9) 
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The segmentation process is implemented as four jobs, one for each data source. 

This process utilizes a distributed computing software framework called MapReduce. 

The Map Phase of each job us used to perform the grouping and sorting of radar returns. 

The Reduce Phase implements the segmentation criteria outlined above. The MapReduce 

process will be discussed more extensively in Section 3.7.1.  

 

3.4.2 Segment Metadata 

After the raw data is segmented, the author developed a metadata collection 

process that builds the segment level metadata to better understand the characteristics of a 

segment. This information is subsequently used by the Fusion Process to connect the 

segments to build the basic Flight Metadata. This process builds and collects information 

including the flight start time and flight end time for each segment. Other metrics built 

will be discussed in Section 3.4.5. An even deeper dive into these metrics can be viewed 

in the data schema in Appendix B.   

 

3.4.3  Data Fusion Process 

The fusion process is designed to take one track, recorded by two separate air 

traffic facilities and merge those tracks into one track that crosses between multiple air 

traffic facilities. This process may potentially need to examine the entire collection of 

data segments of the applicable time window. In order to reduce the associated magnitude 

of data that would need to be examined; only the per-segment metadata is utilized in this 

process. The metadata is an incomplete view of the segments- it contains only high-level 

attributes such as: aircraft identifier, airline, departure and arrival airports, and the 
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bounding values of time, location, altitude, and speeds. The fusion process is designed to 

fit between the segmentation process (which only aggregates clearly-defined, time-

contiguous radar data that corresponds to a flight and radar sensor) and a smoothing 

process (which examines all track data available per-flight), and may therefore decide to 

split a previously fused flight). Therefore, fusion is designed to reduce false negatives at 

the expense of false positives, thus split flights will never subsequently be reconsidered 

for merging by the smoothing process.  

Fusion considers two primary attributes above all others- the window of time 

associated with a segment, and the set of aircraft identification metrics associated with a 

set of segments that create a fused track. The time window is based on the notion that 

different radar sensors will generally overlap in coverage of a flight as time progresses; 

overlapping time windows (within a reasonable quantum at the ends of the segment to 

allow for the radar sweep rate and possibility of missing a few data points) imply that two 

segments may represent the same flight. In addition, aircraft IDs, for the most part, are 

highly consistent through the evolution of a flight. This means that usually, such an ID 

can be used successfully to join all segments for a flight as long as the time window 

constraints can be observed. There are a small percentage of flights where IDs are 

inconsistent; this occurs because IDs have been abbreviated or misspelled as part of a 

manual data entry process along the way. These flights with multiple IDs are 

recognizable because of segments where multiple IDs or other identifying metadata 

appear in single segments that can be used to join segments with different IDs. 

This fusion process is typically difficult to process in a parallel computing 

environment; however, due to the vast volume of data, a parallel computing environment 
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is required to complete the process in a timely manner. For this reason, the utilization of a 

single flight ID allows for an opportunity to parallelize the problem to a per flight 

process. The author developed method to handle processing is described by the following 

algorithm: 

 

1. Load the segment metadata, which comes from multiple sources (NOP, ASDE-X, 

and ETMS) 

2. Group the data by aircraft ID, for sets of segments where such IDs are 

unambiguous keys for fusing flights, and create a separate group of ambiguous 

cases. 

3. Sort the data from each group by time and stream it into a Java program that 

processes the segment metadata and emits pairs of uniquely-generated flight IDs 

and segment IDs for the next step of processing. 

 

The data fusion algorithm expects its data as a time-sorted sequence of comma-

separated value records that represent the segment metadata. By processing these records 

in a temporal order, they can be fused into flights by examining only records that fit 

within a time window that corresponds to the longest segment duration plus the time 

quantum. As records expire from this window, they probably do not overlap any 

subsequent records, and their corresponding flight data can therefore be omitted. The 

records that lie within the current time window are indexed by all metadata attributes 

(aircraft ID, airline code, airports, facility ID, etc.) that can be used to match records to, 

or exclude records from, flights. These indices permit very fast matching of the limited 
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set of data in memory at any point in time.   

 

3.4.4 Track Smoothing and Filtering 

Each facilityôs surveillance data offers differing quality, availability, and 

coverage. This final step creates a synthesized track by smoothing and weighting the 

contributions from each data source. Further explained, various sensors are integrated by 

first computing a smoothed trajectory from each data source. Since the Threaded Track is 

built off historical data sets, least squares smoothing filters have been shown to create 

better trajectory estimates than those in used tracking systems which are subject to an 

inherent measurement lag from aircraft accelerations [52]. These filters also provide 

derived parameters from the raw trajectory such as speed, heading, climb gradient, etc. 

Each radar sensorôs continuous derived track is then integrated into a single Threaded 

Track using a weighted average based on the underlying accuracies in each sourceôs 

sensors and data quality.  

 

3.4.5 Flight Metadata 

The Flight Metadata process unifies merged segmentôs flight information into a 

single summarized flight record. This output contains all of the relevant metrics available 

from the source data in addition to providing links to external data sources such as 

ASPMôs flight delay database. Figure 3-7 depicts the workflow schematic of how flight 

delay information was integrated in the data automation workflow. As discussed 

previously, the process utilizes NOP, ASDE-X, and ETMS segmentation metadata and 

smooth track data information to generate algorithms (TrajectoryFusion, PhasesOfFlight) 
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which in turn generate flight metrics (i.e. Threaded Flight, Phases of Flight). External 

flight delay data sources (as shown) were integrated into the data workflow process for 

model development discussed in succeeding sections. Appendix A depicts the input, 

process and output considerations for the complete list of data fused algorithms tested in 

this research. In addition, Appendix B depicts the data schema of all of the variables used 

in model development testing.  

 

 

Figure 3-7: Data Fusion Workflow 

 

 

3.4.6 Data Quality 

 Due to anomalies in the data, a flight can end up reporting multiple call signs, 

departure/arrival airports, and aircraft types. To solve this issue, the Flight Metadata 

process ranks each type of information on the number of times it appears in a single 

flight. The highest scoring information is considered as the best guess. The Flight 
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Metadata process also preserves low scoring entries for later improvements and analysis 

purpose.  

 

3.5 DBN Formalism Extensions 

As stated in Section 3.2.3, the standard for formulating the structure of a DBN is 

typically modeled using a prior and transition, assuming a first-order Markov process, 

time-invariance, and homogeneity. Unfortunately, to robustly model and infer aircraft 

flight time delay in the presence of uncertainty requires extensions for a kth-order 

Markov process, where in Murphyôs formalism [53] - this is not possible. Another issue 

with the previous formalism is when unrolling the network for inference, every node is 

copied to every time-slice, even if it has a constant value for all time-slices. Lastly, 

although it is possible to introduce a different initial state using the previous method, it is 

not possible to define a different ending state, which can be useful for modeling variables 

that are only interesting after the end of the process. These three observations form the 

basis of extensions to the DBN formalism. 

To offset these constraints, the author applied a formalism extension consisting of 

five components: (1) Temporal arcs, (2) Temporal plate, (3) Contemporal nodes (C), (4) 

Anchor nodes (A), and (5) Terminal nodes (T), as shown in Figure 3- 8. A temporal arc is 

an arc between a parent node and a child node with an index that denotes the temporal 

order. The benefits of temporal arcs are that they provide a more comprehensible 

visualization and allow for a much easier DBN specification that requires less coding. 

The temporal plate is the area of the DBN definition that holds the temporal information 

of the network. Specifically, it contains the variables that develop over time (and are 
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going to be unrolled for inference) and it has an index that denotes the sequence length T 

of the dynamic process. The benefits of a temporal plate have the effect that regardless of 

how many time-slices the DBN is unrolled to, the nodes outside the temporal plate are 

unique.  

 

 

Figure 3- 8: The five components of the DBN extended formalism  

 

 

This is useful for the next component, contemporal nodes, which are nodes outside the 

temporal plate whose values remain the same over time. For instance, if an ATDM is 

seeking information on a specific aircraft type (e.g. an Airbus A320 ï aircraft type does 

not vary over a flight) they would specify this in the contemporal node which saves 

memory and computational time. Lastly, anchor and terminal nodes are nodes located 

outside the temporal plate that have one or more children inside the temporal plate, and if 
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unrolled for inference, these nodes are only connected to the first and last time-slice, 

respectively. These nodes are useful for situations where it would be useful to introduce 

extra variables before the start or after the end of the process that do not need to be 

copied for every time-slice. These nodes are of vital importance for the DBN in this study 

since they were used to extend the DBN formalism in a way that works for the NAS 

system. Additionally, they were used as a guideline to develop an efficient DBN structure 

for the flight delay prediction model.   

 

3.6 DBN Structure Derivation 

The development of a dynamic Bayesian network structure can be a demanding 

undertaking. The initial specification of network structure is a challenging task, and the 

best heuristic is to keep it concise. Concise models can incrementally be expanded to 

more detailed and complex models by adding detail to the network via a node and 

evaluating the functionality of that node. Starting with complex models typically makes it 

unmanageable to evaluate functionality, since distant variables may interact in complex 

ways [54]. 

Construction of the DBN structure commenced with the identification of factors that 

had a direct influence on aircraft flight delay. This is driven by the fact that flight delay 

has an extensive impact on how ATDMs respond to dissimilar situations of operational 

and environmental uncertainty. The key causal factors that directly influence delay are 

discriminated into the following categories according to their phase of flight: ground 

departure causal delay factors, airborne causal delay factors, and ground arrival causal 

delay factors. Using ground departure causal delays as an example, variables in this 
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category include: runway configuration, weather, traffic interactions, traffic restrictions, 

and runway queue position. See Appendix A & B for an in depth explanation of both the 

input and output considerations that went into building said variables as well as the data 

schema which is the end product variables developed from both the fused data sources 

and developed algorithms. The presented model was developed incrementally using a 

combination of domain literature, expert knowledge, and regression analysis. Figure 3-9 

depicts how the DBN model carries out the task of predicting delay time and causal delay 

factors using the extended formalism.  

 

Figure 3-9: Extended formalism for a second-order DBN.  

 

The present model is an example of a second-order DBN using the extended formalism 

discussed in Section 3.5 In other words, the variables that have a red arrow with the 

number two in the box, means that the model predicts flight delay best when the previous 

two instances are taken into account. The anchor and contemporal nodes are placed 

outside the temporal plate (squared dashed line). The temporal plate denotes that the 
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DBN will be unrolled for t = 4 time-slices. In this graph, the nodes that are grey can be 

fully observed and the nodes in white contain missing values.  

 

3.7 DBN Parameter Learning 

After obtaining the DBN structure, parameters were learned from the fused 

threaded track dataset using the Expectation Maximization (EM) algorithm. EM is an 

iterative algorithm that enables learning models from data with missing and/or latent 

variables. The EM algorithm consists of an expectation step (E step) and a maximization 

step (M step). In the E step, the probabilities of the missing variables are calculated given 

the observed variables and the current values of the parameters (sufficient statistics are 

computed). In the M step, the parameters are recomputed using the filled-in values as if 

they were observed values. The process of filling-in the missing values and updating the 

parameters is iterated until convergence. The different variants used for learning 

parameters in Bayesian networks from both complete and incomplete data are discussed 

more extensively in [55].   

While the EM algorithm generally works well in estimating missing and/or latent 

parameters in probabilistic graphical models, two problems for DBN parameter learning 

using EM still exist. First, applying the EM algorithm to learn DBN parameters is often 

subject to local optima and prone to premature convergence which could ultimately lead 

to poor solution quality. To mitigate this problem, the author applied the Age-Layered 

Expectation Maximization (ALEM) method [56], which is primarily based on the genetic 

algorithm concept of creating and computing with a population of randomly initialized 

entities (See Section 3.7.2). Second, as data size increases, learning time of conventional 

sequential learning becomes intractable. To mitigate this problem, the author applied the 
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ALEM algorithm on the MapReduce distributed computing framework.  

 

3.7.1 MapReduce for Massive Scale Distributed Computations 

   MapReduce is a programming framework for distributed computing on massive 

data sets which was introduced by Google in 2004. It is a paradigm that allows users to 

create parallel applications while hiding the details of data distribution, load balancing, 

and fault tolerance [57]. MapReduce requires decomposition of an algorithm into map 

and reduce steps. In the map phase, the input data are split into blocks and processed as a 

set of input key-value pairs in parallel by multiple mappers. Each mapper applies to each 

assigned datum a user-specified map function and produces as its output a set of 

intermediate key-value pairs. Then the values with the same key are grouped together 

(the sort and shuffle phase) and passed on to a reducer, which merges the values 

belonging to the same key according to a user-defined reduce function.  

Hadoop, an implementation of MapReduce, provides a framework for distributing 

the data and user-specified MapReduce jobs across a large number of cluster nodes. It is 

based on the master/slave architecture. The single master server (jobtracker), receives a 

job assignment from the user, distributes the map and reduces tasks to slave nodes 

(tasktrackers) and monitors their progress. Storage and distribution of data to slave nodes 

is handled by the Hadoop Distributed File System (HDFS). A Hadoop node might denote 

a tasktracker or jobtracker machine. A map task describes the work executed by a mapper 

on one input split. A reduce task processes records with the same intermediate key. A 

mapper/reducer might be assigned multiple map/reduce tasks. To learn the parameters 

needed to support this research, Hadoop was run on the MITRE cluster ï a continuously 
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growing cluster consisting of both a North and South configuration with a total of 129 

data nodes, 1,630 mappers, 732 reducers, and over 2 petabytes of storage capacity that do 

all the work. 

 

3.7.2 ALEM on MapReduce (ALEMMR)  

The ALEM algorithm is based on the genetic algorithm concept of creating and 

computing with a population of randomly initialized entities [56]. Each entity has a 

ýtness, which is to be optimized, as well as an age corresponding to the amount of time 

the entity has been in a population [58]. Entities are separated in layers with other entities 

of like ages. Lower layers have young entities in the genetic algorithm, while higher 

layers have the oldest member of the population. As entities age, they ascend to high 

layers. The maximum age of each layer is determined by the age gap parameter; once 

entities reach this age, they ascend to the next layer. Additionally, there are limits to the 

maximum number of entities per layer. The age-layered structure reduces the possibility 

of ýt, old entities, stuck in local optima, overtaking the population due to their high 

ýtness. 

In ALEM, a population of EM runs is created and updated [56]. The age of each 

EM run relates to its number of iterations, and the ýtness of each EM run is its likelihood. 

EM runs are randomly initialized in the first layer, iterate until an age where they ascend 

to the next layer, and may need to compete for a spot in the next layer. Competition 

occurs when a layer is full: if an ascending EM run has greater likelihood, the non-

ascending EM run is discarded to make room. Otherwise, the ascending EM run is not 

competitive enough and is discarded. ALEM continues until a given number of EM runs 
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successfully converge using a pre-deýned convergence criterion and terminates when a 

speciýed number of EM runs converge [58]. Figure 3-10 provides a representative 

example of how the use of ALEMMR provides the distributed platform needed to run a 

population of airport DBNs simultaneously.  

This study adopts the ALEM MapReduce framework developed in [59], and 

provides novelty by addressing two important shortfalls of that research: the amount of 

evidence available, and how well ALEMMR scales when the population size grows to 

thousands or millions. Using ALEMMR, multiple DBNs are processed for each 

operation. For population treatment of EM runs, (i.e., DBN parameters) ALEMMR 

terminates and starts new DBNs as well as executes the likelihood for the layers that are 

changing, as illustrated in Figure 3- 10. More specifically, each mapper in the E-step 

performs expectation calculations on a single evidence set and multiple DBN instances. 

The reducer then performs maximum likelihood estimation and either begins or ends new 

EM runs according to the ALEM layers. The added temporal dimensions unique to DBNs 

are managed by time-indexed variables at each observed prediction horizon (2 hours). 

Since ALEM operates on a dynamic population structure, the number of EM runs 

performed for each MapReduce operation will vary based on pre-defined parameters. 

Section 4.2.1 discusses the additional parameters required to run ALEMMR that consider 

computational time and a global optima.  
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Figure 3- 10: Example of an ALEM application with populations of DBNs on 

MapReduce.  
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Chapter 4: Empirical Experiments 

 

4.1 Experimental Design 

For the DBN used in this study, the author was interested in quantifying four research 

questions:  

 

1. By using ALEMMR, can we learn parameters that scale with an increasing data 

size while addressing the EM local optima problem?  

2. What is the recommended prediction horizon and classification threshold for 

delay prediction?  

3. Does the flight delay prediction model provide accurate prediction results for 

delay time and causal variables for each phase of flight greater than 80% of the 

time?  

4. Can this approach integrate results of the flight delay prediction (if successful) 

into a developed real-time trajectory decision support prediction system that 

recommends which route an aircraft should fly given both historical and real-time 

flight delay information combined with data related to the aircraft and the external 

environment? (previously discussed in Section 3.4) 

 

This experiment presents the prediction results of model runs conducted against more 

than three years of fused threaded track data that covered the period August 2010-

September 2013
4
.  City pairs for all aircraft arriving and departing from the top thirty-five 

major airports in the NAS were used- (as depicted in Figure 4- 1) to estimate accuracy; 

                                                 
4
 Date range of the fused threaded track uploaded on HDFS 
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the author utilized millions of flight records used for parameter learning to obtain the 

predicted beliefs of flight delay time and causal delay variables by using the holdout 

method. In this method, the data is randomly partitioned into two independent sets, a 

training set and a test set. The training set is then used to develop the model, whose 

accuracy is estimated with the test set. 80% of the fused threaded track dataset was for 

training, and 20% was used for test data.  

 

 
 

Figure 4- 1: Track dispersion using a subset of threaded track historical radar data for 

aircraft departing and arriving from the top thirty-five major airports in the NAS. 

 
 

4.2 Empirical Experiments Overview 

This section discusses the results of investigating the three research questions (see 

Section 4.1). For the first experiment, the author applied the ALEM MapReduce 

algorithm to the NAS-wide airport dataset to quantify both the time (minutes) as the data 

set increases and the mean number of iterations until global convergence for DBNs with 

varying levels of dataset size and hidden/missing data nodes. For the second experiment, 

the author developed a confusion matrix that allows visualization of model performance. 

In predictive analytics, a confusion matrix reports the number of false positives, false 










































































