Acoustic vaporization threshold of lipid coated perfluoropentane droplets

M. Aliabouzar, K. Kumar, K. Sarkar

The George Washington University
Department of Mechanical and Aerospace Engineering

Motivation

Ultrasound imaging is non-invasive, real-time, inexpensive, but it suffers from low contrast.

Objectives

- Synthesis and design of phase shift nanodroplets for extravascular interrogations.
- Experimental methodology to determine vaporization threshold of phase shift nanodroplets.
- Comparison of their acoustic responses with conventional ultrasound contrast agents.

Materials and methods

- **Droplet Preparation**
 - Lipid solution
 - Perfluoropentane (PFP)
 - Sonication
 - Droplets

Acoustic droplet vaporization setup

- Transmitting transducer
- Receiving transducer
- Syringe pump injecting the droplet suspension
- Transducers passing through the focal volume

Criterion for ADV threshold determination

- Droplets (before vaporization) — respond weakly to ultrasound.
- Droplets (after vaporization) — strong scatterers of ultrasound, strong nonlinear components.

Results

- Sudden jump in acoustic responses → Vaporization threshold

Scattered responses from microbubbles and vaporized droplets

Excitation frequency of 2.25 MHz

- Acoustic droplet vaporization, images (b) & (c), captured by ultrafast cameras.

Conclusions

- ADV threshold increases with frequency and decreases with temperature.
- The mechanical index at each frequency is lower than 1.9, which is recommended by FDA.
- The scattered response from vaporized droplets matches well with that of independently prepared lipid-coated microbubbles in magnitude as well as trends above the threshold.

Acknowledgements

The authors would like to thank NIH, NSF, and GWU CDRF for their support.

Supplementary information

- Table: Frequency (MHz) MI C 37°C
 - 2.25 0.7 0.43
 - 5 0.84 0.38
 - 10 0.74 0.45

References

1. www.iame.com