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Abstract of Thesis 

A Systems Biology Approach to Model Skeletal Muscle Response to Aerobic Exercise Training 
 

Type 2 diabetes is a condition with poorly regulated glucose metabolism.  The incidence of 

Type 2 diabetes has increased tremendously in the past few decades in most countries and 

is highly prevalent in certain ethnic group particularly. The rise in incidence of Type 2 

diabetes is connected to the ‘Western life style’, with calorie rich food, lack of exercise, 

and obesity.  Type 2 diabetics show poor quality of life with higher risk of all the obesity-

associated complications such as Stroke, Diabetes, Hypertension, Cardiovascular Disorders 

and even Cancer. 

 

Efforts to reduce Type 2 diabetes, or prevent the onset of the disease, typically focus on 

diet, activity, and pharmacological interventions.  Physical activity has been an effective 

approach in controlling and preventing or even reversing Type 2 diabetes. Physical activity 

leads to several beneficial structural and functional adaptations which are mediated through 

different processes and pathways in the skeletal muscle. In order to understand the 

association of physical inactivity with these complications, it is important to know the 

genes that are regulated by exercise which lead to improvements in these conditions.  

Moreover, these changes might be epigenetically regulated, which makes it crucial for 

therapeutic applications. Thus, it is important to integrate different levels of data, including 

both mRNA and DNA level regulation, to better understand these adaptive changes.  

In this study, our goal was to define the adaptive changes in the skeletal muscle of patients 

with Type 2 diabetes after 16 weeks of aerobic exercise training.  The patient group studied 
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was Polynesian; indigenous [Maori] and more recent residents of Pacific Island migrants to 

New Zealand that showed grade III obesity and Type 2 Diabetes Mellitus. We describe 

bioinformatics and data analysis by integrating mRNA, microRNA and epigenetic data 

from these subjects in muscle biopsies taken before and after the intervention. 

 

The research was a pilot study to model the skeletal muscle response in T2DM subjects due 

to 16 weeks of aerobic exercise training. The approach used an integrated data to represent 

the molecular mechanism underlying this intervention and study the DNA (due to 

methylation) and RNA (due to miRNA) level of regulation. The networks generated 

showed an improvement in muscular development, endurance and carbohydrate 

metabolism following the intervention.  We would further integrate the proteomics data 

into these networks using Bayesian approaches for a more probabilistic model of these 

adaptations followed by validation using methods like RT-PCR and/or functional assays. 

This would give an insight into the beneficial adaptive changes due to aerobic exercise 

training in the diabetic skeletal muscle.
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Chapter 1 Introduction 

Background: 

Type 2 diabetes Mellitus (T2DM) is a metabolic disorder, associated with increased glucose level 

in the blood. The incidence of Type 2 diabetes has greatly increased in the Western countries due 

to caloric rich diet, lack of physical activity and obesity.  According to the CDC [Centers for 

Disease Control and Prevention] report 2011, diabetes affects around 25.8 million people in the 

U.S. alone. The rate of diabetes is increasing tremendously causing health issues and increasing 

health care costs. Moreover, diabetes creates major long term vascular complications [Engelgau 

et al. 2004] and other microvascular complications which include diabetic retinopathy, peripheral 

neuropathy and diabetic nephropathy which ultimately may result in vision loss, amputations and 

end-stage renal disease. Exercise training, both resistance and aerobic are known to improve 

quality of life and has been considered as one of the best remedies in controlling and preventing 

or even reversing Type 2 diabetes and associated disorders. Skeletal muscle is an extremely 

flexible organ and adapts immediately to changes. With the advent of microarray technology, 

studies have been conducted to identify genes that are involved in the exercise induced 

adaptations in skeletal muscle [Tehran-Garcia et al. 2005]. However, the mechanisms that lead to 

these exercise induced effects are not very well understood. Physical activity plays an important 

role in the management of T2DM, improving glucose transport, insulin sensitivity and reducing 

the risk of cardiovascular disorders. Exercise is known to improve insulin sensitivity and 

cardiovascular fitness [Duscha et al. 2005, Church et al. 2007], reduces blood pressure [Halbert et 

al. 1997, Kelly et al. 2001], improves dyslipidemia [Durstine et al. 1994, Kraus et al. 2002], and 

metabolic syndrome [Johnson et al. 2007, Slentz et al. 2009]. In addition to functional 

improvements associated with motor recruitment and strength, training can increase skeletal-

muscle glucose disposal [ increased GLUT4 content], vascularization, mitochondrial volume, 
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fatty-acid turnover and oxidative capacity [Rowlands et al. 2009, Galgani et al. 2008]; these 

structural and metabolic adaptations increase the tissue metabolic capacity, which in time may 

contribute to euglycemia, and improved tissue insulin sensitivity. Exercise leads to these changes 

through the activation of MAPK signaling [Long et al. 2004, Zeirath et al. 2002] calcium 

activated signaling, regulation of GLUT4 expression [Lund et al. 22 1995], and regulation of 

PPARs [Russell et al. 2003]. It has also been shown that endurance exercise has greater potential 

of treating T2DM than resistance exercise [Cauza et al. 2005]. To better understand the effects of 

sedentary lifestyle and its association with these complications, it is important to define the 

molecular remodeling that occurs in Type 2 diabetic muscle following an exercise intervention. 

Thus, this study is conducted in an ethnic group with high risk for T2DM and grade III obesity to 

uncover the basis for molecular remodeling after aerobic exercise training.  

Epigenomic Regulation: 

There is increasing evidence that prolonged hyperglycemia of T2DM can induce epigenetic 

changes to the chromatin structure via regulation of various transcription factors and signaling 

pathways [Villeneuve et al. 2010]. In addition to hyperglycemia, T2DM is associated with a 

range of environmental factors [e.g. obesity, nutrition and lifestyle], where each factor could in 

itself induce epigenetic changes to the chromatin structure altering gene expression patterns.  

Clinical studies have shown diabetic complications even after normalization of blood glucose, 

indicating metabolic memory of prior glycaemic state [Villeneuve et al. 2010]. Furthermore, the 

T2DM diabetic pattern of histone acetylation and methylation appears to be reversible [Ling et al. 

2009], which makes it important for therapeutic applications. There is also evidence that miRNA 

can have impact on skeletal muscle gene expression [Safdar et al. 2009, Neilsen et al. 2010].  

Moreover, the fact that many miRNAs play an important role in the pathophysiology of T2DM 

make epigenetic approaches to increase our understanding of skeletal-muscle function and 

adaptation in T2DM useful [Fernandez-Valverde et al. 2011]. Therefore, our proposed study to 
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compare epigenetic mechanisms between the sedentary state and after 16 wks of AER training is 

likely to yield a better understanding of the epigenetic changes involved in the pathophysiology 

of T2DM. 

Here, we will explore the epigenetic regulation of the transcriptomic response at the RNA level 

via microRNA [miRNA] expression analysis and at the DNA level via DNA methylation 

analysis. The overall aim of this study is to reveal new information on the systems biology of 

tissue response to AER training in the unstudied grade III obese population.  

 

Data Integration and Systems Biology model: 

The complex interplay of molecular pathways that are potentially involved in regulating muscle 

functionality, makes systems biology approaches a desirable option. Given the lack of knowledge 

about the exercise induced muscle remodeling, we, here use a systems biology model to gain an 

insight into the pathways/processes and mRNA and DNA level regulation leading to these 

beneficial adaptations in the skeletal muscle. Only one level of data is not sufficient to fully 

explain a particular mechanism in the complex biological system.  To achieve this we use an 

integrated data analysis approach using miRNA, mRNA and epigenomic data to understand a 

broader picture of these exercise induced changes. In order to better understand the  mechanism 

of cancer, an integrated approach incorporating miRNA and epigenetic regulation of genes that 

lead to disease has been used before [Zhu et al. 2011, Radpour et al. 2011]. There are studies that 

have tried to unveil the miRNA induced regulation of the transcriptome in human skeletal muscle 

in response to exercise training [Safdar et al. 2009, Keller et al. 2010], but this is the first report to 

integrate gene expression, methylation and miRNA expression into a model to understand the 

aerobic exercise induced adaptations in diabetic skeletal muscle.  

Array Platforms and Bioinformatics Analysis: 
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In our analysis, we have used two widely used one color array platforms for microarray studies, 

Affymetrix and Illumina. We used Affymetrix GeneChip® [Affymetrix, SantaClara, CA] for 

microRNA profiling, Illumina® Gene Expression BeadChip Array technology [Illumina, Inc., 

San Diego, CA] for mRNA and Illumina Infinium HumanMethylation450 BeadChip for 

methylation profiling. The bioinformatics analysis approach used was specific to the platform. 

Considering the fact that there is no “best method” for bioinformatics analysis and that the type of 

analysis depends on the nature of data in hand, we tried to optimize every step of analysis to 

improve the signal/noise ratios and avoid false positives. In the case of the Affymetrix GeneChip, 

the array has 11 probe-sets per gene [perfect match/mismatch] and the expression value is the 

weighted average of 11 probes. Generating these values is a crucial step and we chose an 

algorithm that could provide higher reproducibility without loss of accuracy and a better 

differential sensitivity for low expressors. For Affymetrix, background correction is particularly 

important, which then depends on the sample to sample variability and can be set to MM 

(Mismatch probes) as background, global uniform background or GC content-based background. 

It is preferable to use PM (Perfect match probes) only for a homogenous sample group. In the 

Illumina BeadArray analysis, oligonucleotides are attached to microbeads which are then put onto 

microarrays using a random self-assembly mechanism and yields 30 copies of the same 

oligonucleotide which is used as internal technical replicate. The measurement of each probe type 

is the weighted average of the replicate measures. This higher sample call rates gives less 

likelihood for false positives and negatives. Illumina provides various internal controls and all the 

preliminary data Quality Control metrics are easily done in the GenomeStudio before any 

statistical analysis. This step eliminates any poor performing samples from being included in 

further analysis. 

 Overall, we selected the data pre-processing method and statistical model best suited to the 

particular platform used. Another purpose was to develop a method for data integration and build 
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networks that can define the integrated effect of the changes in these different levels of data after 

the training intervention.  

Significance of the study: 

This study is the first of its kind integrating different levels of data; mRNA, miRNA and DNA 

methylation in order to model the skeletal muscle response to aerobic exercise training in a cohort 

of South Pacific Islanders with type III obesity and T2DM. 
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Chapter 2 Methods 

The study cohort: 

The cohort of study in this work is a group of Polynesian New Zealanders with grade III obesity 

and T2DM. This population is a high risk group for diabetes. The group for the aerobic training 

is, n=9; mixed gender; average age 48 ± 6 y, with BMI 48 ±8 and weight 123 ±29 kilograms. 

These participants underwent 16 weeks of supervised aerobic exercise training [cycling and 

walking]. Blood and Muscle biopsies [Vastus Lateralis] were taken following an overnight fast 

before and after the exercise intervention, where the post training biopsies were taken after 48 

hours of last exercise session.  

Table 1: Subject and session information 

ID Group      Week 0                  Week 16                 Sessions Completed % Completed Age Sex 

15 Aerobic    Completed Completed   40                            83.33 52 Female 

8 Aerobic    Completed Completed                   39                            81.25 49 Female 

14 Aerobic    Completed Completed                   44                            91.67 59 Male 

6 Aerobic       Completed Completed                   47                            97.92 46 Female 

19 Aerobic   Completed Completed     22                            45.83 47 Female 

22 Aerobic   Completed Completed                   24                            50.00 51 Female 

26 Aerobic   Completed Completed                    25                            52.08 47 Female 

20 Aerobic   Completed Completed                    34                            70.83 53 Female 

7 Aerobic Completed                    Completed 39                            81.25 53 Male 
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Identification of Outliers: 

To indentify outliers in our dataset, different normalization techniques for each platform were 

performed on the dataset followed by hierarchical chip-based clustering [Euclidean Distance, 

Average Linkage UGMA], using The Hierarchical Clustering Explorer 3.0 to cluster samples 

based on distance. The distance which is driven by the stronger effect in the data was used to 

detect any poor performing sample or batch effects, if any, and these were noted. We considered 

both types of outliers, ones that showed major variation from the rest of the data [technical 

outlier] and the other that showed major “within sample” variations and not in accordance with 

our assumption, i.e. samples from same subject showing wide variation. Consistent outliers, ones 

that were noted despite the various normalization techniques used, were excluded from further 

analysis. Based on the clustering results, the best normalization technique based on signal/noise 

ratio was used for each of the three datasets (i.e., the gene expression, microRNA and 

methylation data). 

Data Preprocessing and Statistical Analyses:  

Gene Expression 

The gene expression profiling performed on Illumina® Gene Expression BeadChip Array 

technology [Illumina, Inc., San Diego, CA] and scanned using HiScanSQ System to obtain 

decoded images.   These images were then analyzed by GenomeStudio™ Gene Expression 

Module [Illumina, Inc., San Diego, CA].  Data were generated using the three methods in 

GenomeStudio, with internal normalization and no background correction, without any 

normalization but background corrected, and without any normalization and no background 

correction. The signal intensities and the control plots were used for the Quality Control metrics 

analysis in the GenomeStudio according to the guidelines provided by Illumina and outliers, if 

any, were noted.  Following QC, data was imported into Partek® software, version 6.6 Beta 
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Copyright © 2012 Partek Inc., St. Louis, MO, USA. Different normalization methods were 

performed on the dataset to check for signal/noise ratios using unsupervised chip-based clustering 

in HCE 3.0 [The Hierarchical Clustering Explorer 3.0] to cluster samples based on distance 

[Euclidean distance, Average Linkage UGPMA]. The method that showed the best biological 

grouping of samples by cluster analyses was further used to find differentially expressed genes.  

The tested methods included one-way ANOVA, 2-way ANOVA, and multivariate 3-way mixed 

model ANOVA. In the mixed model analysis, chip and sample were initialized to have random 

effect on this dataset, to negate the effect of any chip bias and sample bias in the data. Since the 

number of replicates in our study was low, it gets difficult for the probes to pass multiple testing, 

so we used GEA ANOVA model that was performed using the approach as described in 

[Mansourian et al. 2004] in order to obtain more robust p values for a low sample size. 

Significant genes with a p value of p<0.0005 and fold change >±1.2 were used considered 

significant. 

MicroRNA Expression 

The Affymetrix Cel files from Affymetrix GeneChip® [Affymetrix, Santa Clara, CA]  platform 

were imported into Partek® software, version 6.6 Beta [Copyright © 2012 Partek Inc., St. Louis, 

MO, USA] using the RMA and GC-RMA algorithm separately. The data was also imported into 

ArrayStar [DNA Star, Madison, WI] and PLIER algorithm was performed on the data. Since the 

samples were all from the same tissue type, we used Perfect Match only while generating this 

value as recommended by Affymetrix for homogenous tissues samples. Further analyses were 

performed in Partek® software, version 6.6 Beta [Copyright © 2012 Partek Inc., St. Louis, MO, 

USA] on the dataset generated by the three different normalization methods. The data was then 

log transformed followed by quantile normalization. Unsupervised chip-based clustering was 

done using HCE 3.0 [The Hierarchical Clustering Explorer 3.0] to cluster samples based on 

distance [Euclidean distance, Average Linkage UGPMA]. The method that showed the best 
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biological grouping of samples by cluster analyses was further used to find differentially 

expressed genes.  The tested methods included one-way ANOVA, 2-way ANOVA, and 

multivariate 3-way mixed model ANOVA. In the mixed model analysis, chip and sample were 

initialized to have random effect on this dataset, to negate the effect of any chip bias and sample 

bias in the data, to negate the effect of any chip bias and sample bias in the data. MicroRNAs 

[Human only] were considered significant with a p-value< 0.05 and a fold change of >±1.1. 

These selection criteria do not seem very stringent but multiple testing yielded very few 

significant probes owing to the low sample size. But then, it should be noted that it is a 

hypothetical model and would be further validated using RT-PCR and/or functional assays. These 

then were used to find the mRNA targets in the mRNA data by integrating in the IPA software 

[Ingenuity® Systems, www.ingenuity.com]. To find the mRNAs in our dataset most likely 

regulated by these miRNAs, we used the anti-correlated relationship filter and limited to only 

those targets that were either highly predicted [TargetScan] or experimentally observed 

[mirRecords].  

Methylation data 

The data from Infinium HD Human Methylation 450 BeadChip was normalized to controls and 

internal probes in GenomeStudio. The data, i.e. the Beta values, were imported into Partek® 

software, version 6.6 Beta [Copyright © 2012 Partek Inc., St. Louis, MO, USA].  The Beta value 

was logit transformed to give the M value, where the relation between Beta and M values is given 

in Equation 1. The rest of the analyses were performed using this value which is known to be 

more statistically valid for differential analysis of methylation [Laird et al. 2010, Du et al. 2010].  

        
   

      
   ;           

      

        
     --- Equation 1 

We performed normalization on the M value thus generated using Variance Stabilization and 

quantile normalization. Unsupervised chip-based clustering was done using HCE 3.0 [The 
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Hierarchical Clustering Explorer 3.0] to cluster samples based on distance [Euclidean distance, 

Average Linkage UGPMA]. The method that showed the best biological grouping of samples by 

cluster analyses was further used to find differentially expressed genes.  The tested methods 

included one-way ANOVA, 2-way ANOVA, and multivariate 3-way mixed model ANOVA. In 

the mixed model analysis, chip and sample were initialized to have random effect on this dataset, 

to negate the effect of any chip bias and sample bias in the data, and probes were considered 

significant with a p value<0.005. These selection criteria do not seem very stringent but multiple 

testing yielded very few significant probes owing to the low sample size. But then, it should be 

noted that it is a hypothetical model and would be further validated using RT-PCR and/or 

functional assays. In order to find the genes that could be regulated by methylation in our dataset, 

we used two approaches. The two approaches used to find differentially methylated probes, one 

using ANOVA with the p<0.005 and the second using Tiling array analysis [Johnson et al. 2006] 

on the ANOVA results with p<0.01, average length 600 bp. First we tried to find probes that were 

either within the gene [exonic], in the CpG island, or in the enhancer region of the gene. From 

these, we selected the ones which were also in our data of differentially expressed mRNA.  

Again, we only considered the anti-correlated relationship between methylation and gene 

expression.   

 

Pathway, Network and Function Analyses: 

Significantly regulated mRNA data was used to interrogate the Ingenuity Pathway Analysis (IPA) 

Knowledgebase [Ingenuity® Systems, www.ingenuity.com] to find networks, functions and 

pathways enriched in the dataset. Considering the limitation of restricting the Ingenuity 

Knowledgebase filter to just skeletal muscle, we did not use this filter. In order to incorporate the 
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significant miRNAs and epigenomics data from our analysis into these networks, we added those 

into the IPA networks obtained by the mRNA network analysis. 

 

Methylation driven networks: 

In order to identify networks/functions that are regulated by the differentially methylated genes, 

we started with these differentially methylated genes and used the IPA “grow” function to get the 

IPA Knowledgebase-defined upstream and downstream targets of genes in our mRNA dataset. 

These molecule, were then used to interrogate IPA to find networks that are most likely driven by 

epigenetic regulation. 
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Chapter 3 Results 

The figure below gives a summary of the integration workflow and the filters used. 

Figure 1: Data Preprocessing and Statistical Analysis Workflow 
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Figure2: Integration workflow 

Figure 2a 

 

Figure 2b 

 

In Figure2a the Process 1 is the integration of miRNA to mRNA, whereas Process 2 is the integration of 

Epigenomics data to the mRNA. In a third step involving both Process 1 and Process 2, we try to find the 

genes regulated by these two processes. Figure 2b shows the Filter selection for integration (Mankoo et al. 

2011). 
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Data interpretation and integration: 

The dataset utilized in this bioinformatics research was recently generated by Dr. David 

Rowlands of New Zealand, Dr. Eric Hoffman of Children’s National Medical Center, and the 

research group in the Center for Genetic Medicine Research at Children’s in Washington DC.  

My role in the research was to carry out the bioinformatics analyses, for which I was primarily 

responsible.  The bioinformatics approach I pursued included: 

Generation of signal intensities through different methods of microarray normalization 

The generation of signal intensities was based on the specific array platform used and the 

provider recommendations were considered.  For mRNA expression, the decoded images from 

HiScanSQ System were analyzed by GenomeStudio™ Gene Expression Module [Illumina, Inc., 

San Diego, CA] with internal normalization and no background correction, without any 

normalization but background corrected, and without any normalization and no background 

correction.  The result showed that the internal normalization and background subtraction did not 

show much variation [data not shown]. While performing quality control for the data obtained 

from these methods, the quality of the data remained more or less the same, so we chose to use 

the data without any background correction and internal normalization for further analysis for 

signal generation in GenomeStudio. A similar method was applied to the methylation data when 

generating the Beta and signal intensities. However, the data with normalization to internal 

controls outperformed the others in the Quality control analysis.  So we chose the Beta values 

which were generated after normalization to the internal controls in GenomeStudio for 

downstream analysis. 

For the Affymetrix Cel files, generation of signal intensities is a crucial step. Affymetrix provides 

its own algorithms, such as MAS5, RMA, GC-RMA and PLIER, for the generation of signal 

intensities. We used all the four different approaches for the data generation for comparison. 
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Optimization of signal/noise ratios 

Illumina Platform 

From generating signal intensities to selecting an ANOVA model for statistical analysis, we tried 

to optimize the signal/noise ratios. For the signal intensities from the Illumina platform, initially 

we performed the quality control in GenomeStudio for the data generated using the three methods 

separately, with internal normalization and no background correction, without any normalization 

but background corrected, and without any normalization and no background correction. The 

same approach was used for both gene expression and methylation data. Analyzing the 

signal/noise ratios and other quality controls in GenomeStudio, on data from these methods, the 

quality of the data remained more or less the same for mRNA, so we chose to use the data 

without any background correction and internal normalization for further analysis. The mRNA 

outlier detected in GenomeStudio in the dataset was one of the technical replicates and was 

excluded from further analysis. Also, we analyzed the unsupervised chip-based clustering to 

detect if the samples grouped into the appropriate biological group [i.e., sample from the same 

subject] which would mean that the biological signal is more than the noise in the dataset. Based 

on the results of the unsupervised clustering results, we chose the normalization method of log 

transformation followed by quantile normalization for the mRNA dataset and Log-transformed 

values for methylation that showed better biological signals, representing the change in gene 

expression due to the exercise intervention. 

Affymetrix Platform:  

We analyzed all the methods of normalization and the biological signal from them by 

unsupervised chip-based clustering. The difference in the clustering results using all the three 

normalization methods did give very similar results. PLIER is the current Affymetrix 

recommended algorithm which outperforms RMA by introducing a higher reproducibility of 
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signal [lower coefficient of variation] without loss of accuracy [higher sensitivity to changes in 

abundance for targets near background and dynamic weighting of the most informative probes in 

a dataset to determine signal].  Another paper comparing the performance of the Probe set 

algorithm found PLIER to be more efficient in avoiding false positives [Seo et al. 2006]. So, we 

chose to select the dataset generated using the PLIER algorithm for our statistical analysis.  

We also chose the mix model ANOVA where sample and chip were initialized to have random 

effect on the data. This model gave a better signal/noise ratio over the one-way and two-way 

ANOVA.  

Detection of technical outliers for exclusion of poorly performing microarrays 

For data from the Illumina platform, apart from detecting poorly performing microarray in 

GenomeStudio, we applied different normalization method to the signal intensities obtained from 

GenomeStudio such as quantile normalization, division by Q3, and variance stabilization, or no 

normalization at all.  This was then followed by unsupervised clustering to detect outliers using 

HCE 3.0 [The Hierarchical Clustering Explorer 3.0] to cluster samples based on distance 

[Euclidean distance, Average Linkage UGPMA]. The assurance of Quality control is very 

important in microarray data analysis. Most approaches to normalizing expression levels assume 

that the overall distribution of RNA/methylation/ miRNA levels doesn't change much between 

samples or across the conditions. So we do not expect to see much “within sample” variation. 

This analysis helped us detect outliers in the data that did not cluster into the appropriate 

biological group [same sample clustering together in our case] consistently with the different 

normalizations, or if they were out-grouped, showed technical variation from the rest of the data. 

Since these outliers are driven by noise rather than by the biological signal, these samples were 

excluded from the downstream analyses. The mRNA, methylation and miRNA datasets showed 

one technical outlier each and these outliers were excluded from further analysis. 
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Statistical selection of significantly altered methylated genes, mRNAs and microRNAs [e.g. 

‘gene selection’] 

Finding differentially expressed mRNA: 

mRNA: Since we had a small number of biological replicates, we chose to use the GEA ANOVA 

model which is known to outperform ANOVA in case of small sample size. Using the GEA 

ANOVA model on the dataset, we tried to minimize the chances of false positives by selecting a 

low p value. A standard cut-off for p value is p <0.05 but as the size increases this cutoff is no 

more significant. In our case with a number of probes around 47000, where a p value of p <0.05 

could give large number of false positives, we choose a p value < 0.0005 and a fold change cut 

off of ±1.2. This gave us 469 significant differentially expressed transcripts. 

Finding Differentially Methylated probes: 

The two approaches used to find differentially methylated probes that could have possible 

regulatory effect on the mRNA dataset, ANOVA with the p<0.005, giving differentially 

methylated probes and the second using tiling array analysis [Johnson et al.2006] on the ANOVA 

results with p<0.01, average length 600 bp, giving differentially methylated genomic regions.  

There was a clear overlap with the probes found in both methods but the ANOVA results and 

selection gave more significant probes than the tiling array and was used for our analysis. The list 

of significant differentially methylated genes is shown in Table 2. 

Differentially expressed miRNA: 

Using the RMA algorithm for normalization gave 120 significantly differentially expressed 

miRNA, whereas the method of normalization, PLIER followed by quantile normalization gave 

20 significant differentially expressed human miRNAs with a p-value < 0.05 and fold-change ± 
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1.1.  We considered a p-value p <0.05 since the size of the data was smaller (around 20000) when 

compared to mRNA and methylation. These selection criteria do not seem very stringent but 

multiple testing yielded very few significant probes owing to the low sample size. But then, it 

should be noted that it is a hypothetical model and would be further validated using RT-PCR 

and/or functional assays. All the miRNAs found significant by PLIER followed by quantile were 

consistent with that found in the list obtained with the RMA normalization adding confidence to 

the result. While RMA gave more miRNAs, they were not found to be significant with the PLIER 

normalization. Many of these miRNAs have been shown to be expressed in the skeletal muscle. 

Table 1 shows these miRNAs with their known role in the skeletal muscle. 

 

Development of molecular networks using Ingenuity  

mRNA expression Pathway Analysis: 

Differentially expressed genes are shown in two tables, Table3, showing the top up- regulated 

genes and Table 4 showing the top down-regulated genes. 

The significant differentially expressed genes were used for functional analysis using IPA 

software. The software detected 422 network eligible genes from the 469 used, based on the 

selected p-value and fold-change cutoffs. The top functions of these are shown in Table 5. These 

were found to be related to tissue development, organismal development, and skeletal and 

muscular development. 
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Methylation driven networks: 

We started with the methylated genes to build a network that was most likely regulated by 

epigenetic changes, since the top mRNA networks are not necessarily regulated by epigenetic 

changes. This gives a better understanding of the functions associated with and regulated by 

methylation.  These networks and the summary of the networks are shown figures 7 and 8. 

 

Data integration into systems biology models of muscle remodeling. 

To understand the epigenetic regulation of these networks, we incorporated the significant 

miRNAs and significant differentially methylated genes into these mRNA top networks using the 

workflow shown in figure 2. The network and their summary are shown in Table 5 and figures 3-

7, where the network scores are based on the number of eligible molecules they contain. The 

higher the score, the lower is the probability of finding those molecules in the network by random 

chance. In constructing these networks, we considered only the anti-correlation relationship 

between mRNA expression and either miRNA expression or DNA methylation.  
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Table 2: Important MicroRNAs in our dataset and their known roles 
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Table 3 Differentially Methylated Genes: 

Table 3a: Hyper-methylation and mRNA down regulation: 

Symbol Fold change in mRNA Function 

OTUD1 -1.78871  

DUSP1 -1.571 Oxidative stress, cell cycle 

FEZ2 -1.464 Axonal outgrowth 

ZC3H3 -1.313  

ENPP7 -1.3 Negative regulation of cell proliferation, 

Metabolic activity 

 

Table 3b:  Hypo-methylated and mRNA up-regulated 

Symbol Fold Change in mRNA Function 

IRF1 1.299 Tumor suppressor 

SMOC2 1.3 Promotes matrix assembly, cell 

proliferation and migration 

MEOX2 1.3 myogenesis 

CMIP 1.32 T cell signaling 

IGF2 1.329 Growth promoter, amplifier of 

glucose mediated insulin secretion 

HLA-DRA 1.377 Immune response 

CXCL14 1.38 Immune, Inflammatory response 

COL6A3 1.4 Tissue formation 

LAMA5 1.47 Attachment, organization, migration 

of cells 

VWF 1.48 homeostasis 

EPAS1 1.51 Angiogenesis, hypoxia, heart rate 

PLS3 1.52 Actin binding 
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Table 4 Top Up regulated mRNA 

Molecules Expression value FUNCTION 

COL4A1 2.343 Angiogenesis, differentiation, axonal 

guidance 

BGN  2.108 Collagen assembly,  extracellular 

matrix binding 

ACTA2 1.982 Muscle filament assembly, apoptosis, 

muscle contraction 

FABP4 1.847 Lipid metabolism, positive 

proliferation and inflammatory  

regulation 

COL3A1 1.776 Axonal guidance, cell matrix 

adhesion, skeletal muscle 

development 

MYH11 1.716 Axon guidance, muscle contraction, 

filament assembly 

CD93 1.678 Cell adhesion, macrophage activation 

COL4A2 1.624 Angiogenesis, extracellular matrix 

organization, axon guidance 

FABP5 1.623 Glucose metabolism, lipid 

metabolism 
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Table 5 Top down regulated mRNA 

Molecules Expression values Function 

ACTC1 -2.192 Filament assembly, catabolic process, 

apoptotic process 

FOS -1.808 Regulation of proliferation, 

differentiation, apoptosis and cell 

death 

MYH1 -1.761 Muscle contraction 

RAN1 -1.70 Skeletal muscle fiber development, 

response to mechanical stimulus 

KBTBD5 -1.669  

ANKRD2 -1.644 Muscle contraction 

SMTNL1 -1.628 Negative regulation of vasodilatation, 

muscle organ morphogenesis 

DUSP1 -1.571 Cell cycle, inactivation of MAPK 

activity, apoptosis 

C21orf7 -1.566  

TPPP3 -1.565 Microtubule bundle formation 

 

Table 6a Top mRNA Functions: 

Molecular Function # of Molecules  

Cellular Movement 109 

Cellular Growth and Proliferation 154 

Cellular development 124 

Cell Death 134 

Cell Morphology 96 
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Table 6b Top Physiological Functions 

Physiological Function # of Molecules 

Organismal Development 110 

Cardiovascular system development and function 100 

Tissue Development 157 

Skeletal and Muscular system development and function 99 

Embryonic development 95 
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Figure 3-9 Top mRNA Networks and Top Methylation Driven Networks: [Red shows up regulation 

of mRNA/miRNA Green down regulation of mRNA/miRNA, Yellow shows Hypo-methylation and up 

regulation and Orange shows Hyper-methylation and down regulation] 

Figure 3 Network 1: Connective Tissue Disorder, Genetic disorder, Skeletal and Muscular Disorder 

[Score: 38] 

 

Figure 4 Network 2: Tissue development, Cell to cell signaling and Interaction, Cellular Assembly 

and Organization [Score: 36]

      



26 

 

Figure 5: Network 3:  Genetic Disorder, Hematological Disorder, Inflammatory Disease [Score: 32] 

 

Figure 6: Network 4:  Carbohydrate Metabolism, Molecular Transport, Inflammatory Disease 

[Score: 26] 
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Figure: 7: Network 5: Skeletal and Muscular System development and Function, Cardiovascular 

system Development and Function, Cell Morphology [Score: 22] 

Methylation driven Networks  

 Figure 8 Network 1:  Connective Tissue Disorders, Genetic Disorder, Dermatological Disease and 

Condition [Score: 50] 
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Figure 9 Network 2: Dermatological Disease and Condition, Immunological Disease, Inflammatory 

Disease [Score: 39] 
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Chapter 4 Discussion 

There are various studies that try to determine the mechanism of the beneficial effect of exercise 

on muscle, especially in patients with type 2 diabetes mellitus. Our study was based on the effect 

of aerobic exercise on an ethnic group with T2DM using Integrated Systems Biology approaches, 

considering both miRNA and DNA level regulation of the networks. This study is the first of its 

kind trying to uncover the role of epigenomics in this exercise-induced muscle adaptation.  

However, it should be noted that there are certain limitations to in-silico analysis. Although we 

tried to eliminate false positives at every step of data normalization and statistical analyses, 

different experimental conditions might result in different interactions in the networks so formed. 

Finding targets that could be regulated by methylation was done using both the approaches using 

Tiling array analysis [Johnson et al. 2006] and by looking at probe level anti-correlation with the 

gene. Both the methods gave almost the same results adding confidence to our results. Although 

methylation is known to both activate and silence gene expression [Ndlovu et al 2011], we 

limited our study by only considering the anti-correlated relationship between gene expression 

and gene associated methylation.  Incorporating epigenomics into the mRNA network to study its 

regulation could have been done in different ways. Since networks and functions regulated by 

methylation are not necessarily the top networks formed from significant mRNA data, we tried to 

build methylation-driven networks starting from the differentially methylated genes.  Here, we 

used an approach starting with the epigenetically regulated genes and building a network from it, 

including its downstream and upstream targets in the mRNA dataset, to better study the 

regulation effect rather than just incorporating these differentially methylated genes in the 

network. To study the miRNA regulation, we limited our miRNA targets in the differentially 

expressed mRNA to only highly predicted and experimentally observed targets. This might miss 

some predicted targets but avoided false positives. Another limitation in integrating miRNA into 

the networks and in considering only the anti-correlation between miRNA and mRNA is that 
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miRNA does not necessarily act only on mRNA degradation but also can interfere with the 

translation process of mRNA [Filipowicz et al. 2008, Chekulaeva et al. 2009].  

Analysis using the IPA software of the mRNA networks: 

Using the selected p value and fold change cutoffs as filters, IPA software selected 422 molecules 

for the analysis out of 469 used to interrogate the software. There were many molecules common 

to multiple networks, and most of these were associated with tissue development, skeletal and 

muscular development, and organismal development. 

Network 1: Connective Tissue Disorder, Genetic disorder, Skeletal and Muscular Disorder 

[Score: 38] 

Network 1 shows the enrichment of genes involved in tissue development, dominated by the 

group of collagens which play an important role in formation of tissue from cells and hence play 

a role in muscular development. This result is consistent with previous studies showing exercise 

to play a positive regulatory effect on synthesis of collagens [Mackey at al. 2005]. There is hypo-

methylation and up-regulation of COL6A3 which play an important role in organization of matrix 

components. FOS, which is predicted to be a target of three miRNAs, miR-181, miR-222 and 

miR-189, is down-regulated, and could have a possible role in the regulation of apoptosis. 

Although previous studies have shown FOS to be up-regulated following an exercise 

intervention, our results show its down-regulation, one possible reason for this could be 

regulation of apoptosis.  

 

Network 2: Tissue development, Cell to cell signaling and Interaction, Cellular Assembly 

and Organization [Score 36] 
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Network 2 consists of mostly the genes involved in tissue development, cellular movement and 

these include the group of laminins and actinins. The network shows the up-regulation of the 

laminin gene family [Lama5, Lama4, LamaB1] which are known to mediate attachment, 

migration and organization of cells into tissue by interacting with other extracellular matrix 

component. This result is consistent with the previous studies showing up regulation of the 

laminin gene family after endurance exercise leading to muscle adaptation [Timmons et al. 2005]. 

TheLAMA5 gene, belonging to the alpha subfamily of laminin gene family and major component 

of basement membrane, was also found to be hypo-methylated and up regulated, thus promoting 

morphogenesis to tissue. Other members of the network [ACTB, ACTC1, CSRP3, DPYSL2, 

ITGA6, PITX1, PROX1, THBS4 AND THY1] also are involved in the development of tissue, 

with ACTN2, DPYSL2, ITGA6, LAMA5, THBS4, THY1 involved in cytoskeleton organization 

and actinins involved in muscle contraction and thus leading to muscular development.  Micro-

RNAs Mir-30c and Mir-29b predicted to target DPYSL2 and/or ITGA6 are down regulated. 

Since DPYSL2 (miRNA regulated) plays an important role in cytoskeletal remodeling (ref), this 

might play a regulatory role in cytoskeleton organization and/or cell adhesion.  

Network 3:  Genetic Disorder, Hematological Disorder, Inflammatory Disease [Score: 32] 

Network 3 again shows the enrichment of tissue development function including cell proliferation 

mainly involving the interaction of myosins. Myosins are known to promote muscle contraction 

and thus muscular development [Uren et al. 2000], Human MYL/h6 is involved in development 

of skeletal muscle and angiogenesis whereas human TEK increases angiogenesis of blood 

vessels.  Another member of the network, ENG, is associated with angiogenesis of blood vessels 

and in cytoskeleton organization [Sanz-Rodrigues et al. 2004]. Thus these genes seem to be 

functioning together towards tissue development after the exercise intervention. The network 

shows an up regulation of the genes regulated by ERK1/2.  Although members of the ERK1/2 are 

not in the dataset, the genes centered around it [JAM2, PTPRB, ENG, RHOC, ACTN1, H19, 
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HLA-DRA, ETS, FKBP5, MTUS1, TEK, CD74] are up regulated and function in the 

differentiation and proliferation of cells. Hypo-methylation of HLA-DRA might be important 

from the diseased point of view, as it was shown in a mouse model to repress diabetes [Johnson et 

al. 2001]. MicroRNAs like miR-128 and miR-30c are down-regulated in the network, where miR-

30 is previously known to play a role in physiological adaptation in skeletal muscle after exercise 

intervention [Eisenberg et al. 2008, Granjon et al. 2009]. This miRNA was predicted to target the 

myosins, showing regulation of muscular contraction and development which might  be mediated 

by this microRNA. 

Network 4:  Carbohydrate Metabolism, Molecular Transport, Inflammatory Disease 

[Score: 26] 

This network is enriched with molecules involved in carbohydrate metabolism. The network 

genes may improve the transport of D-glucose and synthesis of glycogen by up-regulation of 

SLC2A3 [GLUT3] and PPP1R3C. IPA functional analysis predicts reduction of glucose 

metabolism disorder and diabetes mellitus, with 7 molecules [BTG2, GCKR, HES1, MT1E, 

PDE7A, PPP1R3C AND PRKAG3] in the network associated with glucose metabolism disorder, 

and 5 of the 7 molecules, GCKR, HES1, MT1E, PDEFA, PPP1R3C,  going in the direction of 

negatively affecting insulin resistance. This shows that the intervention helped in the 

improvement of glucose transport and breakdown in the diabetic muscle with impaired glucose 

metabolism. MicroRNA miR-29b, which is supposed to play a crucial role in diabetes [He at al. 

2007] and predicted to target SLC2A3, is down-regulated. The transcription factor BTG2, which 

has an anti-proliferative property is down-regulated, which is a predicted target of two 

microRNAs in the network, miR-132 and let-7a, showing a possible positive regulation of 

proliferation. 
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Network 5: Skeletal and Muscular System development and Function, Cardiovascular 

System Development and Function, Cell Morphology [Score: 22] 

This network is enriched with molecules associated with cell differentiation and tissue 

development, including the IGF family of molecules [IGFBP4, IGFBP3, IGFBP7, IGF2]. 

Although the dataset does not include AKT, there is an up regulation of molecules regulated by 

AKT like IGF2, IGFBP7, IGFBP4, IGFBP3, SORBS2, FOXC1, TACC1 and PPARGC1A.  The 

up regulation of PPARGC1A is consistent with previous findings showing its up-regulation 

following exercise and is a key feature in mitochondrial biogenesis.  Molecules associated with 

glucose metabolism disorder, IGFBP3, PPARGC1A and PTGDS, which are up-regulated in the 

network are known to decrease glucose metabolic disorder. Here the hypo-methylation of IGF2 

might be really important. A previous study on the effect of aerobic exercise has shown the up- 

regulation of IGF2 and IFBP4, IGBP7 with positive physiological adaptation [Timmons et al. 

2005]. Another study showed that the low level of IGF2 might be associated with weight gain and 

obesity [Sandhu et al. 2003]. Hypo-methylation of this imprinted gene in the TSS region, [which 

was highly methylated in all samples prior to exercise, considering the Beta values before 

exercise] shows that it might be an important regulatory gene. There seems to be a microRNA 

regulation of the TACC1 gene, which plays a role in differentiation, by miR-128, miR-30c and 

miR-29b.  

Methylation Driven Networks: 

Network 1:  Connective Tissue Disorders, Genetic Disorder, Dermatological Disease and 

Condition [Score: 50]  

This is also the top network which emerged from the mRNA network analysis.  This network 

shows the enrichment of tissue development function, where the collagens and laminins group 

play a major role.  Two of the members of the collagen family, COL6A3 and COL18A1, and 
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LAMA5 of the laminin family show hypo-methylation, giving insight into the epigenetic 

regulation muscle development. The homeobox gene MEOX2, which is important in skeletal 

muscle tissue development, also shows an up-regulation and hypo-methylation [Otto et al. 2010]. 

VWF, an endothelial marker, which is known to increase with exercise, is also hypo-methylated 

in this network and has a function in maintaining homeostasis. 

Figure 7 Network 2: Dermatological Disease and Condition, Immunological Disease, 

Inflammatory Disease [Score: 39] 

This network again shows genes involved in growth, proliferation, differentiation, immune 

response and glucose metabolism disorder.  This network seems to be regulated by the hypo-

methylation of IGF2, HLA-DRA and HLA-A, which might play a role in cell proliferation and/or 

glucose metabolism regulation. 
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Conclusion: 

Aerobic exercise training plays an important role in the management of Type 2 diabetes 

undergoing several adaptive changes in the skeletal muscle. The research was a pilot study to 

model the skeletal muscle response in T2DM subjects due to 16 weeks of aerobic exercise 

training. The approach used an integrated data to represent the molecular mechanism underlying 

this intervention and study the DNA (due to methylation) and RNA (due to miRNA) level of 

regulation. The networks generated showed an improvement in muscular development, endurance 

and carbohydrate metabolism following the intervention. Although it should be noted that it is a 

hypothetical model and would need further validation using methods like RT-PCR and/or 

functional assays. There were several approaches for the data integration which we tried to 

compare and contrast before we followed one for the downstream analysis. The regulation via 

miRNA is expected provide a better understanding after the integration of proteomics data into 

these networks. And for integrating the proteomics data we would use Bayesian approaches for 

amore probabilistic model of these adaptations. These predictions will then be validated using 

methods like RT-PCR and/or functional assays and is expected to give insight into the beneficial 

adaptive changes due to aerobic exercise training in the diabetic muscle.  
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