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Abstract of Praxis 

 

Improved Obsolescence Management for Electronic and Control Systems (ECS) 

in NASA-International Space Station (ISS) Program. 

 

   The most expensive project in human history is the International Space Station 

(ISS); it has reached $160+ billions in total expenses. Currently, the lifespan of the ISS has 

been exceeded, and the spacecraft operations is projected for a minimum of 10 years. 

However, due to its aging technology, the ISS is facing an issue of Electronic and Control 

Systems (ECS) obsolescence.  

Consequently, this situation has badly impacted the ISS-Program. Impacts 

including schedule delays and cost increase have been more frequent during the last 

decade.  

Through this research, an ECS obsolescence assessment has been conducted. 

Models including Neural Networks, k-Nearest Neighbors and Random Forests have been 

implemented for comparison, using Machine-learning-based algorithms, and a cost savings 

analysis has been studied to evaluate the benefits of the best model in facilitating the finest 

solutions and techniques that will effectively reduce schedule delay and decrease cost 

overrun in the Program. 
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Chapter 1ðIntroduction  

1.1 Background 

The Sun, the Moon, the planets, the stars, the galaxies, the universeé, these natural 

phenomena have nurtured, guided and inspired life on Earth throughout many ages. Our 

curiosity is an important process associated with reflective thinking such as exploration, 

investigation, and learning about us and all what surrounds us. 4000 BC, ancient Egyptians 

were already interested in the mystery of skies and space. Yet it was not until the beginning 

of the 20th century when aerial technology gave birth to the airplane that humans acquired 

the technical capabilities of moving into the atmosphere (Garcia and Dunbar, 2018). 

Eventually there was growing interest in how to reach for the stars. Today airplanes take 

us to altitudes of 30,000 feet or more, allowing us to fly above the clouds at nearly 600 

miles per hour. Halfway through the 20th century engineers have invented the technology 

to go farther than the atmosphere and the satellite era had begun.  

The first artificial satellites were launched in Low Earth Orbit (LEO). The satellite 

epoch was destined to show the world that the sky could provide much more than 

intercontinental transportation and the National Aeronautics and Space Administration 

(NASA) was born. Subsequently, the 21st century represents an important period in the 

aerospace industry; today over a thousand operating satellites currently orbit our planet; 

they provide us with daily services including: weather prediction, television programming, 

navigation, reconnaissance photography, radar imaging and space-based internet. But 

today's most important satellite was conceptualized and designed in the late 20th century. 

After many years of complex design and testing, 1998 marks the date of its assembly in 

space. With the assembly completed, this platform was ready for a new phase of operations 
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(Baker, 2012). It was destined to enable us to support and improve life on and beyond 

Earth. Ultimately, this spacecraft became the springboard to prepare and to take the next 

giant leap beyond our moon and into the solar system. This is the largest and the most 

expensive facility humans have ever put into space; it is the NASA's International Space 

Station (ISS).  

In terms of size and weight, the area of the space station is almost comparable to a 

football field and its mass is heavier than a thousand pounds structure. This magnificent 

facility has more space than a conventional single-family house and there are bathrooms 

on-board with a gymnasium and a bay window that can rotate 360-degree (Wilson and 

Dunbar, 2014). Figure 1-1 illustrates how close in size the ISS is to an entire soccer field.  

  

Figure 1-1. Comparison between a Soccer Field and the ISS Size 

Source: NASA (Wilson, 2014) 

While matching an orbit of 400 kilometers, the Space Station performs a rotational 

movement with a speed of 28,000 kilometers per hour. It revolves around our planet every 
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90 minutes for a total of 16 orbits per day. Under the leadership of the United States, 40 

NASA space shuttle flights carried components and crew members to the ISS between 

1998 and 2011. Today NASA aims to travel beyond LEO in order to understand and to 

improve knowledge about the entire universe in general and our solar system in particular. 

The ISS represents a stepping stone for space research with benefits on Earth and Deep 

Space exploration. Its operability would not have been possible without the functionalities 

of various embedded systems (ES) onboard. These ESs include various Electronics and 

Control Systems (ECS) that play a predominant role in sustaining the ISS complex 

engineering. Today, NASA is facing a real challenge in managing ECS obsolescence, this 

issue has led to longer schedule delays and increasing costs in the ISS-Program.  

 

1.2 Research Motivation 

Consistent with the 2017 space policy directive, President Donald Trump has 

mentioned that NASA will and must be the leader of an advanced and sustainable 

exploration program in which partners from commercial and international industries could 

participate to enable human expansion throughout the solar system and bring innovative 

knowledge and opportunities to the world (Dunbar, 2018). A few years prior to Trumpôs 

announcement, in 2014, NASAôs former Administrator Charles Bolden released the 

decision to extend the life of the space station. Bolden emphasized on the fact that in the 

aerospace industry, the station is currently the only facility with such huge scientific and 

social advantages; he also specified that the decision to extend the ISSôs life under Obamaôs 

Administration will allow the U.S. to maintain American leadership in spaceò (Nimon, 

2014).  Eventually, the U.S. Congress passed the decision for extension. However, it is 
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crucial to note that the ISS legacy design has currently exceeded its lifespan. The station is 

now projected to be operational for an additional decade. But, NASA is facing a critical 

issue of ECS obsolescence onboard the station. As a result, the ISS-Program has frequently 

encountered schedule delays and cost increase. 

The United States Government Accountability Office has released a detailed 

analysis under the GAO-15-722T; NASA anticipated that adding to the transport costs for 

crew and cargo to the ISS, the actual research expenses along with the operational and 

maintenance costs are predicted to increase by nearly $ 1 billion in the year 2015. However, 

the costs are expected to exceed $ 4 billion in total for a 5 years period, so this will result 

in about 53 percent from the fiscal year 2015 to 2020. Important factors affecting the 

operating costs of the ISS include additional spare systems needs and solutions to the 

sustainability of the ISS structure (Shelby, 2015). Indeed, the need for sufficient ECS 

replacement is essential to facilitate operations and maintenance and to solve the issues of 

availability, schedule delay, and additional costs due to the lack of spare systems.   

In the NASAôs Office of Inspector General Report No. IG-14-031, it was stated 

that although NASA is enthusiastically working on moderating risks, the anticipation of 

the correct number of spare replacements and their transport to the ISS are the main 

difficulties the agency faces in extending operations for a minimum of 10 years after the 

station's original expected service life (Martin, 2014). 
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1.3 Problem Statement 

The obsolescence of ECSs has contributed to 20 months, on average, of schedule 

delays and 14% cost overrun in ISS operations and maintenance this past decade.  

Factual Details: 

When NASA gets obsolescence notification for an ECS, it should nominally take 

9-to-18 months from initiation of the procurement to delivery. This time-frame must 

include 3-to-6 months to put the contract in place, and 6-to-12 months for manufacturing 

and testing. Due to the current design data being incomplete and containing records from 

multiple obsolete parts, lower tier suppliers need to assess their ability to create 

designs/parts that have the same performance as the original specification. The 

manufacturing process of a spare is then lengthened by the resulting redesign cycle or 

alternative solutions. This represents an issue that contributes to frequent delays and cost 

increase in the ISS-Program (Robbins, 2018). The following table illustrates a few 

examples that were provided by NASAôs ISS program in Houston. In most of the cases the 

time between the initiation of the ECS procurement and the actual delivery is greater than 

18 months and delays are significantly high.  
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Table 1-1. Example of Delays in ECS Procurements 

ECS Obsolete  

Items 

Contractor 

RFP  

Date 

Contract 

Negotiated 

Date  

Spare 

Delivery 

Date 

Delay 

in 

months 

Space to Ground 

Transmitter/Receiver 

/Controller  

(SGTRC) 10/11/13 6/26/15 8/24/17 29 

Sequential Shunt Unit 

(SSU)    4/17/16 6/1/17 8/31/20 35 

Remote Power Controller 

Module (RPCM)   4/17/16 6/1/17 8/31/20 35 

Pump Flow & Controller 

Subassembly (PFCS): 11/7/14 4/28/16 1/13/20 45 

 

In 2014, additional sources from NASAôs Office of Inspector General (OIG) have 

released a program analysis to specify a $1.23 billion cost for ISS operations and 

maintenance which encompassed expenses associated with mission operations, and 

hardware including extra vehicular activities (EVA) and orbital replacement units (ORU). 

Although $90 million have been spent on ORUs during the fiscal year 2013 (FY 2013), the 

ISS-Program had still planned to spend additional $422 million from 2014 to 2020. As 

aforementioned, the additional cost toward the ISS-Program is projected to exceed $4 

billion by 2020. And, 80% of the ORUs destined for the program are mainly ECS-made; 

thus, an average of ~ 13.9% is accounted for obsolescence (Martin, 2014). 
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Figure 1-2. Allocation of FY 2013 ISS Operating Costs 

Source: NASA (Martin, 2014) 

Furthermore, ISS-Program officials noted that a 70% confidence level was used in 

calculating expected costs for independent government expenses estimations. However 

actual costs turned out to be higher. In case ORUs costs exceeded estimations, reserves 

covered for the additional funds. The need for these funds will certainly increase as a result 

of the extended life of the space station (Martin, 2018). 

 

1.4 Thesis Statement 

Predictive models based on Neural Networks, k-Nearest Neighbors and Random 

Forests algorithms can be used to predict future needs for ECS systems, which will help 

reduce schedule delays and decrease cost overrun caused by obsolescence of ECS in ISS. 
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Supporting Details: 

ECS systems fall into a special type of items called Diminishing Manufacturing 

Sources and Material Shortages (DMSMS). The DMSMS sub-category for ECS 

classification is the Sustainment-Dominated Systems (SDS). The particularity of SDS 

systems is the length of their support, the cost of their sustainment and the cost of their 

maintenance over their lifecycle being greater than the cost of their manufacturing or 

procuring. In the aerospace industry, avionics systems may face frequent obsolescence 

issues even before their system integration and permanently while they are being sustained; 

the resulting increases in delays and costs can be critical (Goswami,  2004). In fact, ECS 

can be operationally supported for more than twenty years. The use of machine learning 

represents one of the most powerful and successful techniques to fit a model that can best 

describe the ECS data collected from various ISS databases. Subsequently, the use of a 

cost savings model will help in implementing one of the most successful solutions to 

decrease expenses in the ISS program.   

 

1.5 Research Objectives 

The key objectives of this research consist of collecting, organizing and 

categorizing ISS-ECS data, and then showing evidence that by computing ECS quantity 

predictions using machine learning applications and by conducting a cost savings analysis, 

an accurate buy-quantity for ECS spares can be achieved. We will prove the benefits of 

these methods as potential techniques that can be implemented to effectively reduce 

schedule delay and decrease cost overrun in the ISS operations and maintenance. 
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1.6 Research Questions and Hypotheses 

Research Questions: 

Research Question 1: What category of DMSMS (Diminishing Manufacturing 

Sources and Material Shortages) items do ECSs belong to? 

Research Question 2: What is the particularity of Sustainment-Dominated 

Systems (SDS)? 

Research Question 3: How long can operational support for ECS usually last for? 

Research Question 4: How do ECS operational random failures and ECS K-factor 

failures relate to ECS number of replacements? 

Research Question 5: How will the suggested machine learning models predict 

future ECS quantities and reduce schedule delay due to ECS obsolescence? 

Research Question 6: How will the suggested Cost Savings model decrease cost 

overrun due to ECS obsolescence? 

 

Hypotheses: 

 

Hypothesis 1: Factors such as orbital duty cycle, radiation exposure level, 

operational random failure, and K-factor failure can be used to predict the number 

of ECS spares. 

 

Hypothesis 2: Obsolescence management costs are significantly lower when using 

the ECS prediction model, compared with NASA's approach. 
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1.7 Scope of Research 

This research extends the use of Machine-learning-based algorithms to validate 

implementations from different models including Neural Networks, k-Nearest Neighbors, 

and Random Forests as successful techniques that can be applied to solve the issue of ECS 

obsolescence management. We have gathered most of the data from a variety of sources 

including NASA databases, the United States Government Accountability Office (GAO) 

and Provisional Items Orders (PIOs). We have performed simulations on a total of 402 

ECSs to prove how successful the studied algorithms are in predicting the quantity and the 

cost of ECS spares. The formulated hypotheses have been tested; the interpretation of the 

output results shows efficiency in reducing schedule delays and decreasing cost overrun 

due to ECS obsolescence impact in the ISS-Program.  

1.8 Research Limitations 

In this research effort, the recommended Machine-learning-based algorithms satisfy 

the goal of reducing schedule delay and improving on cost savings. However, we have 

noticed additional challenges which NASA must consider as critical issues to address; 

those challenges are mostly data-related as follows: 

¶ Data mining for ECSs is a very challenging task; NASA has relevant information, 

but it is scattered in different databases. This issue resulted in a poor data 

consolidation at NASA and it made the search very difficult to perform. 

¶ Due to limited access to databases, we have often encountered issues with data 

availability; this situation required a great amount of time to be resolved. 
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¶ ISS-related document archiving was difficult to manage by NASA; the issue was 

also due to the ISS project length. Some of the data is still supported by means of 

old mass storages including paper, floppy disk and hard-drive. 

¶ Due to a large quantity of folders and a variety of file extensions, documents were 

not easy to search through.  

¶ Harvesting, re-organizing and validating the data was a time-consuming activity on 

its own. 

¶ NASA has recently made the decision to try newer technologies including cloud 

computing (Example with Amazon Web Server, AWS).  

 

1.9 Organization of Praxis 

In this praxis, Chapter one begins with a detailed introduction to the topic. A 

general background is provided while the human interest in space is briefly presented. The 

International Space Station is introduced as a unique spacecraft of its kind and issues 

imposed by ECS obsolescence are discussed using the thesis statement, research questions 

and research hypotheses. Chapter two illustrates the various literature sources that we have 

found to further explain and support the assertions in this research. A value summary and 

an overview of the station as a laboratory are explained. A variety of ECS obsolescence 

issues are covered; and the relation between schedule delay and cost overrun is discussed. 

Chapter three provides details about a few techniques used to fit ECS data; it is mainly 

organized to emphasize the comparison between Neural Networks, k-Nearest Neighbors 

and Random Forests algorithms; then, it discusses the Cost Savings method used to solve 

ECS obsolescence issues. Chapter four mainly illustrates the results of various modelsô 
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implementation from chapter three. Finally, Chapter 5 is closing the loop with rubrics 

including discussion and conclusion; the contributions to body of knowledge, and the 

future research recommendations are also debated. 
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Chapter 2ðLiterature Review 

2.1 Introduction 

NASA has a unique consideration for the ISS-Program; due to its multiple benefits, 

the agency has received special budgets to run the ISS effort within separate directorates 

and different offices. Today, the issue of ECS obsolescence is still leading to increase in 

schedule and cost. Machine-learning-based algorithms generated for Neural Networks, k-

Nearest Neighbors and Random Forests models represent excellent techniques that can be 

applied to address the problem of future quantity prediction for ECS. However, since the 

Random Forests model has a high learning performance and a low requirement for tuning 

hyper-parameter, it represents one of the best machine learning procedures (Gomes and 

Bifet, 2017).  

 

2.2 The ISS Value Summary 

2.2.1 An Overview of the International Space Station Program 

2.2.1.a Offices of the ISS-Program: 

The ISS-Program consists of eleven separate offices:  

 

1. Vehicle 

2. Mission Integration and Operations 

3. Avionics and Software 

4. Safety and Mission Assurance/Program Risk 

5. Development Projects 

6. Program Planning and Control 

7. Systems Engineering Integration 

8. ISS Transportation Integration 
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9. Research Integration 

10. Program Scientist 

11. External Integration   

 

2.2.1.b NASA Directorates supporting the ISS-Program 

 

At the Johnson Space Center (JSC) in Houston, Texas, the ISS-Program is 

supported by six directorates  

 

1. EVA 

2. Mission Operations Support 

3. ISS Ground Processing and Research Projects 

4. Flight Programs and Partnerships 

5. Engineering Support 

6. Safety and Mission Assurance  

 

 

2.2.2 The International Space Station: A Laboratory in Space  

 Various fields of experiments including physical sciences, human research, exploration 

research and technology development are conducted onboard the space station. From a 

NASA officialsô standpoint, the ISS is essential in helping the Agency for developing and 

improving ways of mitigating health risks related to space travel. It provides testing 

capacities for innovative technologies in anticipation of upcoming exploration challenges, 

and it serves as a facility for studies to improve life on our planet. Currently, the ISS is the 

unique micro-gravity platform that can be used to conduct analysis for possible uses of low 

Earth orbit (Reuter, 2018). 
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 Other tangible benefits of the Station include the international cooperation with other 

partners, and the expanding inspiration in the areas of applied science, technology, 

engineering, and mathematics. Made-in-Space is an example of applied science conducted 

on Station, since the success of its first flight to the ISS, the company mastered the 

manufacturing technology of ZBLAN fiber optical cable in microgravity. The second flight 

has also successfully resulted in the manufacturing of adjustable-cable with higher quality. 

Meanwhile, Made-in-Space is preparing its third flight of their ZBLAN fiber optic cable 

manufacturing machine. This third test will consist in manufacturing of very long cables 

with the purpose of dispersion testing. It was in line to be launched by the Cygnus/Antares 

flight in November 2018, but instead it has been transported by the Dragon/SpaceX on the 

CRS-16 mission operated on the heavy Falcon 9 rocket in December 5th, 2018 (Skran, 

2018). 

 Furthermore, NASA is planning to use the Station as a transportation platform, a 

maintenance, and launch base for future Lunar missions, Martian missions and asteroids. 

Eventually, in the near future, it would also serve as a commercial, diplomatic and 

educational platform.  

 

2.2.3 Need to Resolve Human Health and Performance Risks 

 It was previously assessed that while extending the ISS-Program to the year 2024, 

greater opportunities for few human health solutions and performance risks mitigation 

would have been achieved; however, a variety of risks will remain unresolved if the 

stationôs life is not extended for more years. 23 health problems and various performance 

risks have been identified for mitigation aboard the ISS. The International Space Station 
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provides an ideal microgravity facility for different types of experiments; according to 

NASA officials, the use of ISS would allow the Agency to develop solutions for risks 

including reduced muscle mass, fatigue-induced errors, decompression sickness, and 

cardiac rhythm problems. It was assumed that if operations onboard the Space Station were 

maintained until 2024, NASA would be in a better position to alleviate at least half of these 

risks (Martin, 2014). However, by ending the program in 2020, NASA would not have 

enough time to address a considerable number of risks. NASA has also assessed that an 

extension to 2024 will not provide the ISS program with enough time to address and 

mitigate 11 major risks. Table 2-1 provides some details on the issue.  

Table 2-1. Example of Human Health Mitigation Plan through ISS-Program 
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2.3 Decision to Extend the ISS-Program 

The idea of extending the station life was debated and strongly supported during 

the last decade. Subsequently to the 2002 Cost Analysis Requirements Document (CARD-

Baseline), the extension agreement of the program was signed on August 19, 2003 (ISS-

Arch, 2007). Table 2-2 below presents some details on the ISS-Program commitment. 

Table 2-2. 2005 Financial Year Budget Specification 

  

NASA aimed to use the ISS as the best platform for human expansion throughout 

the solar system. At NASA's Johnson Space Center, the manager of the Commercial Crew 

and Cargo Program Office (C3PO), Alan Lindenmoyer, once said that NASA's funds 

satisfy promotions for commercial participation in space exploration as directed under 

President Bush in 2004. Then, it was the turn for NASAôs Authorization Act to direct the 

agencyôs advance space commerce in order to set an innovative vision for space exploration 

in 2005 (Loff, 2011). 

The Commercial Crew and Cargo Program was institutionalized in 2005 in order 

to facilitate safety and reliability demonstration. Cost-effective transportation services to 

low-Earth orbit (LEO) and innovation in the private sector were also promoted. The main 

goal of this program has been to allow the government to purchase transportation services 
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at reasonable prices. Meanwhile, commercial crew and cargo transportation consist in an 

essential part of the human exploration program (NASA, 2012). In 2008, the decision to 

use commercial resupply services with Orbital Sciences Corporation (Orbital ATK) and 

Space Exploration Technologies Corporation (SpaceX) was signed while NASA decided 

to contract for cargo transportation to the ISS.  

2013 marks the 15 years-operation of the ISS. It was the prove of a significant 

achievement in the history of human spaceflight. Subsequently, the NASA Administration 

announced the intent to extend operations until 2024. Even though its original design was 

tested for 15-year, the ISS was getting approved to operate for 26 years at that time (Martin, 

2014). 

In 2015, a GAO study released an analysis according to which tens of billions of 

dollars have been expended over the past two decades. The expenses were used to develop, 

assemble, and operate the ISS which was operated as a manned research base for over 14 

years. NASA planned to spend more than $22 billion from 2016 to 2020; however, most 

of the amount was planned for crew and cargo transportation costs. Ultimately, the Agency 

anticipated a minimum of 4 years in life extension of the ISS beyond 2024. Congress has 

finally ratified several regulations to extend the station program in order to take further 

advantage of the investment already made (Shelby, 2015). 

In his Testimony ï Statement of June 2016, Dr. George C. Nield discussed the 

support of the U.S. Congress for the space industry. Since the first Commercial Space 

Launch Act has been approved in 1984, the commercial space transportation industry has 

significantly changed. In this industry, the role of Congress remains very important and the 
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latest Commercial Space Launch Competitiveness Act (CSLCA) demonstrates how critical 

that role is (Nield, 2016). 

Nowadays, the idea of extending the ISS lifespan is still standing. On September 

26 of 2018, a few weeks after senators sought a similar regulation for extension, a NASA-

ISS legislation was introduced in the U.S. House of Representatives. That legislation was 

established to extend ISS operations until 2030. In his opening statement, at a House Space 

Subcommittee hearing, Rep. Brian Babin (R-Texas), chairman of the subcommittee, made 

a statement on the past and future of NASAôs space exploration efforts, he also introduced 

The Leading Human Spaceflight Act. This regulation was announced to suggest further 

directions to NASA in regard to the continuation of the station program (Foust, 2018). 

 

2.4 Hardware Assessment and Certification 

 

Based on decisions to extend the ISS-Program, a thorough hardware assessment 

and re-certification has been conducted. NASA and its international partners had originally 

conceptualized, designed and tested the ISS for a 15-year life span; however, in 2013 oldest 

segments of the Station surpassed this expectation (Martin, 2014). NASA must keep in 

mind significant ISS events have led to a variety of operational uncertainty in the past. 

Based on additional spending and schedule drift due to ECS reliability, the NASA 

administration is still in search of any improvement that will reduce and limit the impacts 

of hardware obsolescence issues. Table 2-3 illustrates some example of obsolescence 

occurrence and corrective actions that have been performed. 
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Table 2-3. Examples of ECS Obsolescence Occurrence and Corrective Actions 

 

Many challenges in extending the Program have been examined; these include the 

expenses and agenda estimates in relation to the extension, the efforts to increase utilization 

of the Station for exploration and scientific researches, and the many re-certifications of 

the Stationôs structure and hardware. Several steps were used by NASA to reduce and 

control costs for ISS operations and maintenance (Carreau, 2015). NASA must address 

numerous areas of risk: 

- Solar arrays degradation is occurring at a faster pace than predicted and this can 

lead to a risk of insufficient power generation. This is a critical challenge since 

the solar arrays are the main source of electricity for the spacecraft. 
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- While reliability of most replacement parts has been proven quasi-successful, 

sudden failures of key hardware have occurred and have resulted into unplanned 

EVA needed for hardware repair or replacement.  

- Although NASA had a robust cargo transportation system, carrying large 

replacement parts such as solar arrays, segment ORU, and radiators to space is 

still a huge challenge.  

Predicting the future number of ECS replacements and transporting them to the ISS 

present major challenges. Yet, NASA may not have sufficient spare ORUs to replace those 

that fail or exceed their operational lives. Since the Space Shuttle has retired in 2011, 

NASA has lost the capacity to launch the largest ORUs; consequently, the agency runs the 

risk that it will not be able to replace this type of hardware in case of any future failure or 

need (Martin, 2014).  

 

2.5 Risks due to Failure and Lack of ECS Spare  

Although the ISS was originally designed for a set lifecycle of 15 years, NASA is 

looking for the best approach to ensure current and future extensions of the program will 

be safe. Nevertheless, continuing ISS operations beyond the original End of Life date 

would create additional ECS-related risks that NASA must carefully manage. There are 

numerous examples of failures that were critical to the station operation and sustainment.  

2.5.1 Example with the Controlled Pump Module Assemblies  

In early 2013, the Pump Module Assemblies were assessed as sufficient to sustain 

operation until the year of 2018. Nevertheless, the loop A Pump Module failed twice by 

December 2013. Loop B continued with operations, but the loss of the loop A Pump 
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resulted in no back-up ability. Due to this emergency, two unplanned spacewalks were 

immediately scheduled for astronauts to replace the module. In order to facilitate the EVAs, 

a cargo resupply mission had to be delayed for the following month (Martin, 2014). Figure 

2-1 below shows the thermal system pump unit. 

 
Figure 2-1. Thermal System Pump Unit Source 

Source: NASA (Martin, 2014) 

 

2.5.2 Example with External Active Thermal Control Systems 

In the past, NASA had also encountered technical issues with the six External 

Active Thermal Control System radiators (EATCS). The Active Thermal Control System 

(ATCS) is made of the Internal Active Thermal Control System (IATCS), EATCS, the 

Photovoltaic Thermal Control System (PVTCS) and the Early External Active Thermal 
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Control System (EEATCS). The IATCS comprises many loops used to force water in the 

U.S. Destiny Laboratory module in order to collect the excess heat from electronic and 

experiment equipment. That heat is then distributed to the Interface Heat Exchangers (IHE) 

for EATCS transfer. An EATCS consists of ammonia loops used to accumulate heat from 

the IHEs and electronic equipment on cold-plates. The collected heat is then transported to 

the S-1 and P-1 radiators for final rejection into space (NASA-IDS, 2013). Transferring 

absorbed heat into space to maintain ISS temperatures within defined limits is very critical 

to the station operations; due to many failures in 2013, three additional spares have been 

requested for procurement. Figure 2-2 below shows a representation of the EATCS. 

 
 Figure 2-2. External Active Thermal Control System 

Source: NASA (Robbins, 2018) 
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2.5.3 Example with Carbon Dioxide Removal Assembly Controller 

During the STS133 mission, Astronauts Michael Barratt (mission specialist) and 

Scott Kelly (Expedition 26 Commander) performed troubleshooting and maintained the 

Carbon Dioxide Removal Assembly (CDRA) in the Air Revitalization (AR2) rack from 

Node 3. Failures happened in 2011and there was a critical need for replacement (Barratt 

and Kelly, 2011). 

 
Figure 2-3. Carbon Dioxide Removal Assembly  

Source: NASA (Robbins, 2018) 

 

2.6 Space Transportation for Electronics and Control Systems 

In the NASA COTS/CRS Program, the improvements in costs have been assessed; 

as a result, implications for future NASA missions were discussed in order to seek a better 
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solution in reducing overall costs and schedule delays (Zapata, 2017). For NASA, ECS 

transportation from Earth to Space represents an important effort to consider, as the space 

shuttle retired in 2011. The next table outlines a summary of the historical data from the 

ISS commercial program; it reveals potential measures of improvement.   

Table 2-4. Summary of the Historical Data for Transportation Cost to the ISS 

 

 

2.7 Expenses Increase 

As projected on a GAO analysis of the 2016 fiscal year budget estimate, NASA 

expenses for research, operations and sustainment has significantly increased. However, 

these costs are still expected to increase by approximately $130 million from 2017 to 2020, 

which NASA officials attribute in part to the inflation rate. Similarly, recent efforts from 

the Department of Defense (DOD) on aircraft systems showed that operation expenses can 

growth significantly over time. Other increasing factors for operation costs include the need 

for additional spare parts and mitigations for the issues regarding the ISS structural 

(Shelby, 2015). 
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Figure 2-4. Budget Element for ISS Funding FY 2010-2020 

Source: NASA-ISS Data (Shelby, 2015) 

 

2.8 Relation between Schedule Delay and Cost Overrun (NASA Study) 

Generally, there is a multifaceted relationship between schedule delays and cost 

overruns. Many organizations including the Government Accountability Office, the White 

House, the Congress, and the leadership in federal agencies are usually concerned about 

cost overruns related to government programs (Majerowicz and Shinn, 2015). Particularly 

in federal agencies, the minimum cost assumptions for maximum returns is usually flown 

down to program baselines and requirements. The main purpose of various programs is to 

decrease expenditures from Agencies. Therefore, there is an increased motivation to 

underestimate programs which often leads to reducing scopes and capabilities, or to 

shifting findings between projects (Trail, 2015). 
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Many organizations including the United States Department of Defense (DoD), the 

National Aeronautics and Space Administration, and the Aerospace Corporation have 

previously conducted research and studies related to cost and schedule. As a result, close 

correlations between schedule delays and cost overruns have been found repeatedly. 

However, we should keep in mind that such correlations do not necessarily imply 

causalities. In the past, it has been argued that schedule slips are highly correlated to cost 

overruns because it was found that similar root causes could bear some effects on both. 

However, there is an interdependency between schedule and cost (Majerowicz and Shinn, 

2015). While we could denote some interdependencies between schedule and cost overrun, 

other factors share the increasing responsibility for schedule delay in particular. A tangible 

example is the lack of spare hardware as it is the case for ECS in the ISS-Program. This in 

turn would eventually impact the operations and maintenance activities on the Station, and 

it would contribute to a cost growth in the program. Generally, throughout most projectsô 

lifecycles, the identification of an increase in cost can usually denote some type of schedule 

growth and vice versa. Similarly, schedule delays and cost overruns can usually occur with 

an increase in different project risks; therefore, the integration of cost, risk planning, and 

execution is always beneficial (Cole, 2012). 

NASA has certainly achieved brilliant accomplishments in history. Nevertheless, 

the Agency has also experienced significant issues of cost overruns and schedule delays in 

many occasions in the past. For more than 50 years, NASA Goddard Space Flight Center 

(GSFC) has managed complex projects including the space communication systems, the 

Earth observing satellites, the weather satellites, and the ISS. These great achievements 

were conducted by means of planetary, stars and deep space observatories. Because of the 
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complex nature of these projects, NASA-GSFC has often integrated efforts from multiple 

contractors, internal support (from other NASA centers throughout America), and 

international partners. One of the agencyôs main goals is to adapt in new technologies for 

faster and cheaper solutions. Other issues may often occur at later stages; therefore, it 

would be very difficult to understand and mitigate all challenges at the beginning of any 

project life cycle (Castaneda and Doolen, 2015).  

 

2.9 Obsolescence of Electronic Part 

Today, electronics are found in almost every consumer market. The industry of 

electronics has been growing and is still expanding for applications opportunities in 

technology. The fast rate at which this is happening is astonishing; the industry has grown 

three times faster than the overall economy from 1990 to 2000 (Foucher and Kennedy, 

1998).  

In value added to the U.S. economy, the semiconductor industry has been ranked 

among the best (Damuth, 1998). The capitalization of the Intel-Market was getting larger 

than the three major automakers combined in America (The Economist, 1997). The fast 

improvement in electronics has influenced the rate at which new technologies were taking 

place. Subsequently, component operating speed has increased, sizes miniaturization has 

improved, and technologies for higher density packing have been developed. Gordon 

Moore, the founder of Intel, had made a prediction in 1965; he anticipated that every 18 

months, the processing speed of microprocessors would double (Stogdill, 2007). The study 

of various electronic components has proven this trend. The channel length of transistors 

has significantly reduced over the past 40 years (MOSFET). In fact, a new CMOS 
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fabrication technology has been introduced every 2 or 3 years, with the minimum allowable 

channel length reduced by about 30%; that results in 70% of the value from the preceding 

generation. Since the device area and size were reduced throughout each generation, twice 

as many devices were able to fit on a chip of the same area (Sedra and Smith, 2010).  

Consumer market usually prefers cutting edge technology, and with such a 

tremendous speed, there is a decrease in product procurement life. Suppliers are often 

overstretched to keep up with advancements of technology innovations for expected profit. 

Small products such as cell phones, videogames, and iPods have a disposability factor 

which may correspond to approximately 2 years. These types of products are designed for 

a 2-year-EOL. However, the decreases in procurement life present no advantages to 

products with lifecycles that are longer than those of the parts they are made of (Sandborn, 

2013). Throughout the Aerospace industry, many occurrences of mismatch in part lifecycle 

and system lifecycle have been recorded during the past decade. For products with longer 

manufacturing and support lives, mismatches between the lifecycles of electronic 

components/parts procurement and of the products that they are designed for would result 

in a significant increase in obsolescence management costs (Feng and Singh, 2007). To 

manufacture a spacecraft, thousands of electronic or computerized parts are needed, and 

spacecrafts are usually expected to last 15-to-20 years. With millions of parts, the ISS 

spacecraft was built and assembled to withstand a 15-year long operation lifespan; today, 

it is impacted by the similar issue of parts -system mismatch. 
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2.10 The Integrated Ship Control Monitoring and Management System 

 

Since there is a fast-changing pace of ECS, the early stage of lifecycles is usually 

the best time to begin the plan for asset obsolescence. An analogy is made with the 

Integrated Ship Control Monitoring and Management System (ISCMMS) as a very close 

example to Electronics and Control Systems. This control system is intended to monitor 

and to manage the control of a maritime platform; thus, it is based on the platform size and 

the systems complexity. The ISCMMS is made of various components including human 

machine interface and manual overrides for all safety critical components; it also comprises 

computer systems, controllers, sensors, consoles, cabling and various type of actuators. 

With many similarities in comparisons to ECS general functionalities, the ISCMMS can 

be used to control, to monitor and to record status of various subsystems including 

navigation, pumps, motors, and valves (Cuculoski, 2013). ECSs used in the ISS electronics 

platform are comparable to ISCMMS in functionality and importance. Decisions to upkeep 

or to replace an ECS requires a careful and systematic approach. Each ECS systems must 

be reliable and maintainable to sustain the ISS current functionalities and further extensions 

of the program. Without functional ECSs, the ISS platform cannot be operated and 

maintained. 

 

2.11 ECSs as Diminishing Manufacturing Sources and Material Shortages 

Due to important aspects including the systemôs manufacturing length, the systems 

support life, and unpredicted life extensions, necessary parts and other resources can 

become unavailable before the systemôs actual EOL. Parts unavailability from the original 

manufacturer (OEM) implies a production end of new instances of the actual part (no 
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possibilities for acquiring a new spare) as well as an end of support. This type of 

obsolescence is particularly predominant in special DMSMS parts, the SDS systems 

(Sandborn, 2013). 

The operational support of SDS can last 20 or more years. One of the issues 

encountered is that the end-of-support date is sometimes unknown; it is likely to be 

prolonged from the original plan on many occasions before the systemôs retirement. The 

ISS-Program faces similar issues. ECSs are SDS systems; swapping obsolete parts with 

parts from newer technology is not always a practical solution because of high costs 

involved and system requalification for re-certification. In regard to complex platforms 

designed for legacy blueprint, such as the ISS spacecraft, it is very important for each spare 

part to fit the same form, functionalities, and the various interfaces of the original ECS. 

Otherwise, the original certification could be jeopardized, and it would not be possible to 

use the spare item to sustain continuous operations and maintenance. For commercial 

products with high volume, the redesign is driven by improvements in equipment 

manufacturing; however, it is not the case for SDS (Singh and Sandborn, 2006).  

 

2.12 Managing Electronic Part Obsolescence 

 

In obsolescence management, the reactive approach focuses on determining an 

appropriate and immediate solution to the problem. There is a great deal of system 

requalification (Requal) involved in part replacement non-obsolete substitute or 

alternative. On the other hands, Pro-active management of obsolescence is necessary to 

address components that are identified prior to the actual occurrence of obsolescence. This 

type of management targets items with high obsolescence risk (Sandborn, 2013). Pro-active 



32 

 

management requires an ability to predict future needs for spare replacements and 

obsolescence risks for components. Predicting the life-cycle cost of obsolescence 

management within a system is a very important task for two major reasons are:  

1) A cost estimation for expenses associated with managing a system; it 

includes the budget for the system support. 

2) A management optimization of a system using costs assessments and 

trade-off of the cost impact for multiple management approaches.  

 

2.13 Literature Review Summary 

In his February 12, 2018 statement on the Fiscal Year 2019 agency budget proposal, 

Robert Lightfoot, former acting NASA Administrator, mentioned that the ISS has been 

used as the keystone for propelling human presence farther into the Universe with the goal 

of transporting Humans to planet Mars. This has allowed new studies in the human 

physiology of spaceflight and it has enabled new industry partners to grow innovations and 

to help NASA. Then, Mr. Lightfoot has mentioned that with an increase in budget, the 

commercial cargo and crew work (mainly operations and maintenance) continue through 

the life of the International Space Station (Lightfoot, 2018). To fully utilize the ISS and 

extend its operational life, it became necessary for NASA to figure out the best solutions 

in order to maintain and extend the lifecycles of the onboard systems that are subject to 

obsolescence (Sparks and Zoller, 2012).  

Nevertheless, increases in schedule delays and costs are still rising as the impact of 

ECS obsolescence is worsening. Through this research we are mainly suggesting the use 
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of Machine-learning-based algorithms for models such as Neural Networks, k-Nearest 

Neighbors and Random Forests to solve the ECS problem in the ISS-program.  
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Chapter 3ðMethodology 

3.1 Introduction 

In this section we suggest the use of Machine-learning-based algorithms to 

implement different predictive models including Neural Networks, k-Nearest Neighbors, 

and Random Forests processes in order to predict the number of ECS spares required in 

the future. A cost savings analysis has been developed to show the benefit of the predictive 

model. . Throughout the course of this praxis, we have previously tried a few models that 

did not work very well. Some of those models including the vector auto-regression, and 

the multiple linear regression had revealed that the orbital duty cycle was the variable with 

the least ability to predict. In order to re-assess the impact of the orbital duty cycle, we have 

decided to run our machine learning models with and without the duty cycle variable. 

 

3.2 Hypotheses: 

As it has been previously mentioned, there are 2 hypotheses in our praxis, and they 

are stated as follows: 

Hypothesis 1: Factors such as orbital duty cycle, radiation exposure level, 

operational random failure, and K-factor failure can be used to predict the number 

of ECS spares. 

Hypothesis 2: Obsolescence management costs are significantly lower when using 

the ECS prediction model, compared with NASA's approach. 

After we have collected 20 yearsô worth of information, we have used data from a total of 

402 ECSs and we have implemented various algorithm to facilitate better predictions into 

the future. In this work, we have provided a detailed analysis of twelve Random Forest 
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models, two k-Nearest Neighbors regression models, and two Neural Network models. 

Then the resulting cost savings model has been implemented.  

3.3 Databases and Sources Description 

The databases that have been accessed during this research include: 

¶ The Maintenance Analysis Data Set: The ISS MADS was previously known as the 

Modelling Analysis Data Set. 

¶ The ISS-BOM Deliverable Items List: The Bill of Materials stores information 

about modules, systems, sub-systems and part costs.   

¶ The ISS ECS PIO: This database stores ISS Provisional Items Orders relevant to 

spare target and recovery (Star). 

¶ The ISS Government Estimate and NRE values: This database  contains various 

records including NRE values, logistics data and procurement information . 

3.4 Prediction Models 

3.4.1 Input variables and metrics 

¶ Models Input Variables: 

1. ECS Operational System Number of Random Failures over time (OS_NRF): This 

type of failures represents any ECS failure that may take place during ISS 

operation. They are due to normal defects, stress, aging and usability. 

2. ECS Operational System Number of K-Factor Failures over time (OS_KFNF): 

NASA defines this specific type of failures as any ECS failure that may occur as a 

result of human factors only. These failures are mainly due to the astronautôs 
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maneuverability while performing operation or maintenance tasks (Human-induced 

only). 

3. ECS Number of Spare Replacement over time (Prior_Repl_N): This variable is 

used to quantify the number of ECS replacement per year. 

4. Orbital Rad Exp Level (Orbital_RadExp_Lev): The International Space Station is 

surrounded by extreme conditions; it is exposed to many hazards including ionizing 

radiation and micro-particles. A variety of instruments are constantly measuring the 

levels of exposure in  space. Aboard the ISS, radiation and particle monitors provide 

these levels in LEO orbits. 

5. Orbital Duty Cycle (Orbital_Duty_Cycle): NASA uses this variable to assess the 

time ratio an ECS is being turned ON for operation throughout a complete LEO 

orbit. 

¶ Models Metrics: 

The Root Mean Squared Error (RMSE) is a very good metric that can be used for 

measuring the modelôs predictive performance. Since we aim to minimize errors while we 

are running our predictions, the lower the RMSE the greater the performance of the model 

(Bennett and Lanning, 2007).  However, R-squared (Ὑ ) is a statistical metric that is very 

good at measuring how close or how far will the data be to the regression line fit . The 

higher the R-squared, the greater the performance of the model (Ogee and Ellis, 2013). 

3.4.2 Predicted variable 

Our Predicted variable is the number of spare ECS systems needed in the future to 

avoid obsolescence issues. It is the ECS Number of Spare Replacement over time 

(Future_Repl_N). Based on such predictions, NASA would be able to estimate its needs 
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for ECS and this would represent a good information to manage the ISS budget for the 

coming years.  

 

3.4.3 Model 1: The Random Forest 

Today, the Random Forests is one of the best models used in statistics; it is structured 

by various combinations of decision trees. The use of decision trees is very beneficial 

because they have low bias and adequate variance (Gilles, 2014). Thus, there is no ñgeneral 

formò for Random Forest equations. As alluded to in the introduction, we trained 12 

random forest models with various different inputs so as to compare all the models and 

choose the best one from the 12. We have discussed each model and we have included the 

code used to create, train, validate, and test these models. The variables and metrics used 

for the Random Forests Models are as follows: 

3.4.3.a Random Forest Model 3A1 

This first model is the Random Forest Model 3A1, and this version trains on all the 

first 15 years (1998-2013) at once to predict the next 5 years (2014-2018); this is 

implemented one year at a time. This model trains on all variables up to and including 

2013. When predicting future years, it uses the actual number of replacements as inputs in 

training for future predictions.  

3.4.3.b Random Forest Model 3A2 

Nowadays, Machine Learning applications have evolved and Feature Selection 

(FS) is a key factor for performance of Random Forests algorithms. Many researches have 

used this approach to improve data for model predictions (Fan and Wei, 2018). Achieving 

solid results depends on various factors including the model itself, the data available, and 
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the preferred features. Good features are needed to describe the structures corresponding 

to the data. The Random Forest Model 3A2 is a version of the model 3A1, in this version 

we are using feature selection by means of mean, standard deviation, and median as input 

variables. We are feeding the model more information, so  it will train, learn and  

understand the structures inherent in the data. The feature selections improve model 

trainings and yield to lower prediction errors assessed with the RMSE metric (Ana and 

Joao, 2013).  

3.4.3.c Random Forest Model 3B1 

The Random Forest Model 3B1 trains on all the first 15 years (1998-2013) at once 

to predict the next 5 years (2014-2018). However, this is implemented 5 years at the time, 

all at once. So, it differs from the previous 2 models A1 and A2. When predicting future 

years (2014 -2018), this model does not use the predicted number of replacements as input 

for future predictions.  

3.4.3.d Random Forest Model 3B2 

The Random Forest Model 3B2 is a version of the model 3B1. It differs from 3B1 

by using the predicted number of replacements as input for future predictions. So, it 

incorporates each year's prediction into the next set of years. This means that the 2018 

prediction uses data up until 2013; but it also uses predictions from 2014, 2015, 2016, and 

2017 as individual inputs factored into the model. 

3.4.3.e Random Forest Model 3B3 

The Random Forest Model 3B3 is a version of the model 3B2. The only difference 

is that this model uses averages as additional inputs to the model.  
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3.4.3.f Random Forest Model 3B4 

The Random Forest Model 3B4 is a version of the model 3B3. This model differs 

from 3B3 by using implemented mean, standard deviation, and median as additional inputs 

to the model. 

Subsequently, the implementations of the remaining versions of our Random Forest 

Models have been performed without the Orbital Duty Cycle. The various results are 

discussed for comparisons in chapter 4.   

 

3.4.4 Model 2: The k-Nearest Neighbor Regression Models (kNN) 

There is an increasing need for analysis methodologies that can incorporate 

multiple sources of data all at once to perform complex computations; the k-NN model is 

one of them. The choice of kNN is motivated by its flexibility, and its simplicity in 

incorporating different data types and its easiness in adaptation to irregular feature (Ruzzo 

and Yao, 2006). The kNN model uses an algorithm that regresses various cases by copying 

the known value of the k nearest neighbors. kNN is a way of recommending a value similar 

to the one we are predicting by means of computing distances from a specific data point to 

all other data points. In our k-NN algorithms, we have been using 15 years for training 

(from 1998 to 2013) while the remaining 5 years (2014-1018) have been used for testing.  

3.4.4.a The kNN Model With Orbital Duty Cycle  

The variables used for this model are the following: 

1. ECS Operational System Number of Random Failures over time (OS_NRF) 

2. ECS Operational System Number of K-Factor Failures over time (OS_KFNF) 

3. ECS Number of Spare Replacement and Cost over time (Prior_Repl_N) 
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4. Orbital Rad Exp Level (Orbital_RadExp_Lev) 

5. Orbital Duty Cycle (Orbital_Duty_Cycle) 

Since kNN regresses based on a distance metric, all values of all variables should 

be on the same scale. So, we converted all variables to be on the range [0,1]. Subsequently, 

the predicted number of replacements was then converted back to the original scale after it 

was assigned a predicted value from [0,1].  

3.4.4.b The kNN Model Without Orbital Duty Cycle 

In this second kNN regression model, we investigate the result of removing the 

Orbital Duty Cycle variable from the model. The variables used for this model are the 

following: 

1. ECS Operational System Number of Random Failures over time (OS_NRF) 

2. ECS Operational System Number of K-Factor Failures over time (OS_KFNF) 

3. ECS Number of Spare Replacement and Cost over time (Prior_Repl_N) 

4. Orbital Rad Exp Level (Orbital_RadExp_Lev) 

3.4.5 Model 3: The Neural Networks 

Neural Networks are among the best machine learning techniques that are 

developed nowadays. Their applications are in use to generate solutions to real-world 

problems from various industries (Castrounis, 2016). In our Neural Network algorithms, 

we have been using 15 years for training (from 1998 to 2013) while the remaining 5 years 

(2014-1018) have been used for testing. Neural Network Model equation and general form 

can be presented as shown below on Figure 3-1. 



41 

 

Figure 3-1. Example of Neural Network Modeling 

3.4.5.a Version with the Orbital Duty Cycle  

The variables used for this model are the following: 

1. Radiation Exposure (1 numeric variable) 

2. Number of Random Failures (1 numeric variable) 

3. Number of k-factor Failures (1 numeric variable) 

4. Year Number in the 5-year cycle (1 numeric variable) 

5. Orbital Duty Cycle (1 numeric variable) 

In our code, we are using a 10-fold Cross-validation on the historical data set, the 

resulting optimal value for hidden units was found to be 1. The final network chosen by 

the method is a 5-5-1 network with 36 weights. 

Figure 3-2 below represents a visualization of the network. 
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Figure 3-2. Visualization Representation of the network 

3.4.5.b Version without the Orbital Duty Cycle  

The variables used for this model are the following: 

1. Radiation Exposure (1 numeric variable) 

2. Number of Random Failures (1 numeric variable) 

3. Number of k-factor Failures (1 numeric variable) 

4. Year Number in the 5-year cycle (1 numeric variable) 

For the case without the Orbital Duty Cycle, the optimal value for hidden units was 

also found to be 1. However, the final network turned out to be a 406-1-1 network with 

409 weights. 
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3.5 Cost Analysis 

3.5.1 The purpose 

In fact, hypothesis 2 is a consequence of hypothesis 1. In this praxis, the ability to 

make predictions is very important; as a result, the goal of the Cost Savings analysis is to 

investigate whether or not we can save money by utilizing the predictions from our models. 

3.5.2 The Cost computation based on predictions 

In this context, we have selected the model with the lowest RMSE and the highest 

R-squared. We have chosen the final Random Forest model (ñ3B4_DroppedDutyò) to 

conduct the cost analysis; we have found the savings in cost that would have occurred had 

we purchased ECS parts five years in advance and all at once.  

Figure 3-3 below illustrates the comparison implemented using the model. While 

the results and analysis are discussed in chapter 4, the actual algorithm is provided in the 

appendix. 

 

Figure 3-3. Comparison Model Illustration between Predictions and Actual  
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We have implemented the resulting cost values for the total predicted ECS needs 

over 5 years (2014-1018) by applying the specific cost values to the Predicted Number for 

Future Needs on a 5 years period for each individual ECS_j. We have also calculated the 

actual cost values for the total ECS needs per each individual year (as for years 2014, 2015, 

2016, 2017, and 2018) by applying the specific cost values to the Actual Number for Future 

Needs per year for each individual ECS_j. Then we have run a comparison to assess any 

opportunity for costs savings. More details on the computation are provided via the code 

in the appendix part. 
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Chapter 4ðResults 

4.1 Introduction 

Throughout this research, we have multiplied our efforts in order to assess different 

approaches and techniques to fit the right models to our data and to finally pick the best 

one out of all the versions we have studied. The output result from the various model 

algorithms are being discussed and analyzed in the following sections. 

4.2 Results from the Random Forest Models 

4.2.1 Results from Random Forest Model 3A1 

Table 4-1 below shows the metrics for the model performance. All metrics with 

associated p-values are significant at p < 0.001, so we can conclude that this model is a 

good predictor of future numbers of ECS replacements. The RMSE of all years is 1.1796 

and the r-squared value for All Years indicates that 75.1% of the variance is explained by 

this model. 

Table 4-1. Model Performance Metrics 

 Test data 

R-squared 

RMSE SMAPE 

2014 0.619 *** 0.6434  0.4809 

2015 0.524 *** 1.0700 0.5985 

2016 0.739 *** 1.1588 0.3775 

2017 0.760 *** 1.4740 0.3147 

2018 0.864 *** 1.1150 0.2523 
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All Years 0.751 *** 1.1796 0.3450 

*** p < 0.001, ** p < 0.01, * p < 0.05 

 

Figure 4-1 presented below illustrates a visual comparison between Actuals and 

Predictions. 

 

Figure 4-1. Visual Comparisons between Actuals and Predictions 

The next figure presents an example of one of the various Decision Trees; the 

specific tree illustrated bellow is from Random Forest model 3A1. 
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Figure 4-2. Random Forest Model A1-Decision Tree 

After paying close attention to Figure 4-1, the background computation for the first 

rows is explained as follows: 

ƺ Row 1. All the data we are predicting starts in this upper box. 

ƴ If Operational System Number of Random Failures in 2010 <= 4.5, then follow 

the left-hand arrow. Else, follow the right-hand arrow. 

ƴ mse = 2.2  

ǒ indicates that the mean squared error of all the data in this box is 2.2 

ƴ samples = 179 and they are assessed repeatedly. 

ǒ indicates that there are 179 samples in this box. 

ƴ value = 0.7 

ǒ indicates that the average Number of replacements for all samples in 

this box is equal to 0.7 



48 

 

ƺ Row 2, the 1st box from left. Only get to this box if Operational System Number of 

Random Failures <= 4.5 

ƴ If Number of Replacements in 2008 <= 2.5, then follow the left-hand arrow. 

Else, follow the right-hand arrow. 

ƴ mse = 1.4  

ǒ indicates that the mean squared error of all the data in this box is 1.4 

ƴ samples = 176 and they are assessed repeatedly. 

ǒ indicates that there are 176 samples in this box. 

ƴ value = 0.6 

ǒ indicates that the average Number of replacements for all samples in 

this box is equal to 0.6 

 

4.2.2 Results from Random Forest Model 3A2 

Table 4-2 below shows the metrics for the model performance. All metrics with 

associated p-values are significant at p < 0.001, so we can conclude that this model is a 

good predictor of future number of replacements. The RMSE of all years is 1.1239 the r-

squared value for All Years indicates that 77.4% of the variance is explained by this model.  

Table 4-2. Model Performance Metrics 

 Test data 

R-squared 

RMSE SMAPE 

2014 0.638 *** 0.6267 0.4680 

2015 0.518 *** 1.0769 0.5698 
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2016 0.753 *** 1.1277 0.3614 

2017 0.762 *** 1.4659 0.3061 

2018 0.853 *** 1.1585 0.2483 

All Years 0.774 ***  1.1239 0.3346 

*** p < 0.001, ** p < 0.01, * p < 0.05 

Figure 4-3 presented below illustrates a visual comparison between Actuals and 

Predictions. 

 

Figure 4-3. Visual Comparisons between Actuals and Predictions 

4.2.3 Results from Random Forest Model 3B1 

Table 4-3 below shows the metrics for the model performance. All metrics with 

associated p-values are significant at p < 0.001, so we can conclude that this model is a 

good predictor of future number of replacements. The RMSE of all years is 1.1714, which 

is not lower than the RMSE of every other model in so far. This implies that this model 



50 

 

was the best predictor for this data. The r-squared value for All Years indicates that 75.4% 

of the variance is explained by this model.  

Table 4-3. Model Performance Metrics 

 Test data 

R-squared 

RMSE SMAPE 

2014 0.619 *** 0.6434 0.4809 

2015 0.534 *** 1.0594 0.5930 

2016 0.723 *** 1.1945 0.3846 

2017 0.734 *** 1.5523 0.3265 

2018 0.837 *** 1.2201 0.2711 

All Years 0.754 ***  1.1714 0.3561 

*** p < 0.001, ** p < 0.01, * p < 0.05 

Figure 4-4 presented below illustrates a visual comparison between Actuals and 

Predictions. 

 

Figure 4-4. Visual Comparisons between Actuals and Predictions 
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4.2.4 Results from Random Forest Model 3B2 

Table 4-4 below shows the metrics for the model performance. All metrics with associated 

p-values are significant at p < 0.001, so we can conclude that this model is a good predictor 

of future number of replacements. The RMSE of all years is 1.1796, which is not lower 

than the RMSE of every other model in so far. This implies that this model was not the best 

predictor for this data. The r-squared value for All Years indicates that 75.1% of the 

variance is explained by this model.  

Table 4-4. Model Performance Metrics 

 Test data 

R-squared 

RMSE SMAPE 

2014 0.619 ***  0.6434 0.4809 

2015 0.517 *** 1.0775 0.5969 

2016 0.716 *** 1.2099 0.3871 

2017 0.733 *** 1.5552 0.3345 

2018 0.836 *** 1.2247 0.2675 

All Years 0.751 ***  1.1796 0.3584 

*** p < 0.001, ** p < 0.01, * p < 0.05 

Figure 4-5 presented below illustrates a visual comparison between Actuals and 

Predictions. 
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Figure 4-5. Visual Comparisons between Actuals and Predictions 

4.2.5 Results from Random Forest Model 3B3 

Table 4-5 below shows the metrics for the model performance. All metrics with associated 

p-values are significant at p < 0.001, so we can conclude that this model is a good predictor 

of future number of replacements. The RMSE of all years is 1.1806, which is not lower 

than the RMSE of every other model in so far. This implies that this model was not the best 

predictor for this data. The r-squared value for All Years indicates that 75.1% of the 

variance is explained by this model.  

Table 4-5. Model Performance Metrics 

 Test data 

R-squared 

RMSE SMAPE 

2014 0.618 *** 0.6440 0.4824 

2015 0.529 *** 1.0643 0.5839 

2016 0.722 *** 1.1969 0.3817 

2017 0.738 *** 1.5387 0.3282 
















































































































