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Abstract of Thesis 

Implicit -Explicit Time stepping for a Two-Dimensional Inviscid Fluid -Structure 

Interaction Solver 

This thesis describes the development of a two-dimensional, high-order, fluid-

structure interaction (FSI) solver. The well-established spectral difference (SD) method is 

used for spatial discretization of the Euler equations over deforming, unstructured 

quadrilateral grids. The Geometric Conservation Law (GCL) is incorporated into the 

conservative Euler equations, before discretization. After simplification, the equations 

reduce to a form, in the computational domain, identical to the equations in the physical 

domain. In this form, the equations can be integrated implicitly in time, without the 

requirement of any additional source term, to guarantee free-stream preservation. The fluid 

and structure sub-systems are individually integrated in time using the explicit first stage, 

single diagonal, diagonally implicit Runge-Kutta (ESDIRK) method. As the first step to 

solving the coupled, non-linear Euler equations, implicit in time, we linearize the governing 

equations. The resulting linearized simultaneous equations are then solved sequentially 

using lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation sweeps. The fluid and 

structure sub-systems are loosely coupled and the coupling term is integrated in time using 

an explicit RK method, resulting in an implicit-explicit (IMEX) RK coupling. The spatial 

accuracy and the free-stream preserving ability of the solver are demonstrated by testing a 

supersonic, isentropic vortex in a curved channel. Next, the temporal accuracy of the solver 

is established using an Euler vortex propagation test case. It is also demonstrated that the 

four-stage ESDIRK is capable of handling time-steps 50 times larger than the four-stage 

explicit RK. In each of these cases, third- and fourth-order SD for spatial discretization and 
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second-order backward difference (BDF2) and third-order, four stage ESDIRK for time 

integration were tested. Since the loose (explicit) FSI coupling restricts permissible 

structural deformation, we limit ourselves to small harmonic oscillations resulting from 

linearized perturbed Euler equations. The interaction between a linear piston and an 

inviscid, compressible fluid is simulated to demonstrate that the IMEX coupling does not 

contaminate the spatial or temporal accuracy of the implemented high-order methods. 

Through rigorous testing, this development is expected to lay a foundation for a powerful 

computational framework for various fluid-structure interaction problems. 
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1. Int roduction 

Advances in computing technology have made it possible to obtain numerical 

simulations of fluid-structure interaction (FSI) problems of ever-increasing complexity. 

Simulating FSI problems comes under the larger umbrella of multiphysics modeling, where 

more than one set of governing equations dictate the progress of the system. Typically, 

specialized software is available, or developed, to deal with any one set of those equations. 

However, the challenge faced by FSI solvers, rather the essence of FSI modeling, is the 

accurate representation of the coupling between the two sets of equations. The solvers for 

the fluid and solid subsystems may be coupled using monolithic or partitioned approaches. 

In monolithic coupling, the equations representing the dynamics of fluid and solid 

subsystems are expressed in a common form and marched simultaneously. When the 

equations of the subsystems cannot be expressed in the same form, they can be individually 

marched in time and coupled in space and time to account for the influence of the 

subsystems on each other, resulting in a partitioned (segregated) coupling. Of the two 

approaches, partitioned coupling permits the reuse of existing fluid and structure solvers, 

while not requiring a complete overhaul of the code. 

It follows naturally that matching the accuracy of the coupling with that of the fluid 

and structure solvers is important for the accuracy of the individual solvers to be 

meaningful. The surge of high-order methods for spatial discretization, such as 

discontinuous Galerkin (DG) and spectral difference (SD), motivated efforts towards 

implementing efficient high-order time integration schemes. While explicit multi-stage 

Runge-Kutta schemes are easy to implement, the stability constraints they impose make 
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them less favorable. Implicit methods do not suffer from the same stability issues, and help 

afford a larger time-step, but are relatively expensive. Thus, of late, efforts have been 

extended towards reducing the cost of implicit time marching. Persson and Peraire [19] 

compared several methods for obtaining solutions to implicit systems of equations for the 

DG method and concluded that the restarted generalized minimal residual (GMRES) 

method, coupled with a p1-ILU(0) preconditioner, was most suitable. A different approach 

was adopted by Liang et al. [18], who demonstrated that a first-order backward difference 

(BDF1) integration scheme, coupled with a three-level p-multigrid method and suitable 

implicit smoothers, was capable of producing speedups of nearly two orders of magnitude 

for two-dimensional scalar convection and Euler equations, compared to its fully explicit 

counterparts, for the spectral difference method (SD) on fixed simplex grids. Yu et al. [27] 

used the second-order backward difference (BDF2) scheme for three-dimensional 

compressible flows for the SD method over deforming hexahedral grids. Cox et al. [3] used 

a similar implementation with the flux reconstruction (FR) method for an artificial 

compressibility based two-dimensional, incompressible flow solver. A hyperbolic system 

was driven to steady-state in pseudo-time using BDF1 sub-iterations, every physical time-

step, to satisfy the divergence-free constraint, and the solution was advanced in physical 

time using BDF2. The combination was found to permit time-steps two orders of 

magnitude larger than those permitted by a third-order, explicit Runge-Kutta. In these three 

studies, the implicit system was solved locally using LU-decomposition and relaxed 

globally using symmetric Gauss-Seidel (SGS) iterations.  

While the larger time-step choice and the stability offered by implicit time 

integration makes them attractive for solving multiphysics problems, obtaining high-order 
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implicit FSI coupling may become computationally inefficient. Therefore, recent studies 

have focused on retaining the robustness of implicit time integration, without making the 

coupling between subsystems too expensive. As a result, implicit-explicit (IMEX) coupling 

schemes have recently gained traction. van Zuijlen [24] developed a class of IMEX Runge-

Kutta schemes for FSI coupling, in which the fluid and solid sub-systems and the stiff part 

of the fluid-solid coupling are integrated using suitable implicit RK (ESDIRK) methods. 

A high-order prediction for the non-stiff part of the coupling is made using an explicit RK 

(ERK). A similar study was conducted by Froehle [6] for the DG method with the implicit 

solve for the Navier-Stokesô equations being done using Newton GMRES method with a 

block ILU(0) or block-Jacobi preconditioner. 

Implicit time-integration evidently provides several advantages over explicit 

schemes, and recent efforts have helped reduce associated computational overheads. The 

aim of the thesis, therefore, is to extend these techniques to an existing two-dimensional 

SD flow solver and develop a framework for modeling fluid-structure interaction. To that 

end, the research done for this thesis unites ideas presented in the studies discussed above. 

The widely discussed ESDIRK scheme [6,10,11,24,28] is used to march the fluid and solid 

sub-systems and the high-order IMEX coupling scheme of van Zuijlen [24] is implemented 

using the spectral difference method for the two-dimensional, compressible Euler 

equations. A modification to the method of Yu et al. [27] was recently proposed by Zhang 

et al. [28], so that multi-stage implicit RK methods can be used over deforming grids. In 

accordance with this modification, the geometric conservation law (GCL) is incorporated 

into the fluid equations before discretization. The ability of the solver to preserve free-

stream over deforming grids is indicative of correct implementation of the GCL. The 
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implicit solve for each sub-system is carried out using the LU-SGS smoother [3,18,27] and 

an explicit high-order prediction of the fluid-to-structure coupling is made in the form of 

surface traction. 

The thesis is organized as follows: Chapter 2 explains the discretization of the fluid 

and solid governing equations in space and time. Chapter 3 discusses the FSI coupling 

algorithm, while chapter 4 showcases results of a systematic and rigorous validation of the 

solver. The study is concluded in chapter 5 and future work is suggested.   
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2. Discretization of Governing Equations 

2.1 Two-dimensional Euler equations 

The two-dimensional, inviscid, compressible Euler equations may be expressed in 

the conservation form as: 

 

”
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Here, ɟ represents the fluid density, ui the velocity components, p the normal stresses 

(pressure), e is the specific total energy of the system, and q the volumetric heat generation. 

In two dimensions, the indices i, j range from 1 to 2. The system is closed using the 

following relation for energy: 

 Ὡ
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ρ

ς
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In the above relation, ɔ is the isentropic constant for the fluid. The conservation equations 

can be written in the vector form as: 
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where, Qf represents the vector of solution variables and F and G are flux vectors in the 

two directions. Qf can be expressed as:  

 ╠

”
”ό
”ὺ
”Ὡ

 (4) 

The flux vectors, in the absence of heat generation, can be represented using the following 

inviscid flux vectors: 

 ╕
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  (5) 

2.2 Spectral Difference (SD) Method 

The Euler equations are discretized in space using the spectral difference (SD) 

method, which is among the four commonly implemented high-order discretization 

methods for hyperbolic partial differential equations, the other three being the 

discontinuous Galerkin (DG), spectral volume (SV) and the more recent flux 

reconstruction/ correction procedure via reconstruction (FR/CPR) methods. The staggered 

grid Chebyshev multidomain method of Kopriva and Kolias [12,13,14] was developed to 

overcome the difficulties of implementing standard Chebyshev spectral methods. In this 

method, the computational domain is divided into multiple subdomains and within each 

subdomain, the solution variables and fluxes are reconstructed using high-order 

polynomials. The use of subdomains is doubly advantageous, in that, unlike traditional 

spectral methods, this can be implemented around complex geometries. It also permits the 
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use of lower-order approximation polynomials in each subdomain, which reduces 

computational overheads and facilitates the use of larger time-steps. The method was 

extended by Jameson, Liu, May, Vinokur and Wang [8,15,26] and renamed as the spectral 

difference method.  

In the SD method, elements in the discretized physical domain (x, y, t) are 

transformed to a square, standard element in the natural coordinate system (ɝ, ɖ, Ű), as 

shown in Figure 1 (a), using suitable mapping functions. In the computational domain, the 

vectors representing the conserved solution variables and the fluxes are computed as: 

 

╠ ȿὐȿ╠  

╕ ȿὐȿ╠‚ ╕‚ ╖‚  

╖ ȿὐȿ╠– ╕– ╖–  

(6) 

Where J represents the Jacobian matrix, which along with its inverse, are defined as: 
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Figure 1: (a) Transformation of an element in the physical domain to a standard element in the 

computational domain (natural coordinates) and (b) layout of solution and flux points within each 

computational cell of third-order SD. 

As in Koprivaôs method [12,13], arbitrarily high orders of accuracy are achieved 

through smooth, polynomial reconstructions of solution variables and fluxes, within each 

computational cell. The solution and flux points are staggered within each cell. For an Nth 

order SD, N points are required to construct a continuous solution polynomial of order N-

1. The coordinates of these solution points, given by those of the Chebyshev-Gauss-

Lobatto points, are chosen such that they facilitate Chebyshev-Gaussian quadrature: 

 ‚
ρ

ς
ρ ÃÏÓ

ςί ρ

ςὔ
“      ί ρȟςȟȣȟὔ (8) 

Likewise, to construct an Nth order flux polynomial, N+1 flux points are needed. These 

flux points are given by the Gauss-Legendre points and include the two ends of the 

computational cell. The intermediate flux points are the roots of the Legendre polynomial 

of order N-1 [8]. The Legendre polynomials are expressed using the following recursive 

function: 
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A layout of the solution and flux points, staggered in a computational cell for a third-order 

SD is illustrated in Figure 1 (b). A smooth reconstruction of the conserved solution 

variables can be done within the computational cell using the following tensor product: 

 ╠ ‚ȟ– ╠ȟȟά ‚Ȣά –  (10) 

Where mi/j are the Lagrange polynomials (Figure 2), which are defined over solution and 

flux points as follows: 
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(11) 
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Figure 2: Lagrange polynomials (a) m1, m2 ... m5 of order 4 with location of solution points and (b) 

m1, m2 ... m6 of order 5 with corresponding flux point points, for a 5th order SD. 

Moreover, the derivatives of the solution variables can be reconstructed using the 

derivatives of the polynomials. Therefore: 

 
╠

‚
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ά

‚
‚Ȣά –  (12) 

 ╠

–
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–
–  

(13) 

Using equations (12) and (13), the fluxes, ╕ and ╖ at any point within the computational 

cell can be expressed directly using the solution variables within the same cell. Likewise, 

the fluxes can also be reconstructed over the flux points as: 

 ╕‚ȟ– ╕ȟὲ ‚Ȣά –  (14) 
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(15) 

This formulation also permits easy computation of the flux derivatives, using the same 

interpolation functions, as follows: 
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The solution variables, ╠ , can thus, be computed directly from the fluxes at the flux points 

and the corresponding interpolation functions. Thus, there exists a direct transformation 

between the solution and flux vectors, within each computational cell.  

The fluxes are continuous within each cell, but discontinuous across cell interfaces. 

A suitable Riemann solver must be employed to ensure the continuity of fluxes at the 

interface. Care must also be taken to account for changes in eigenvalues of the Euler 

equations on deforming grids. The fluxes are made continuous using a Rusanov solver 

[23,27], in which the fluxes are computed as:  

 

╕
ρ

ς
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(18) 
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The subscripts L and R indicate fluxes and conserved variables on the left and right sides 

of the cell interface, ὧӶ is the average speed of sound, ὠ is the averaged normal velocity at 

the cell interface and ὺ is the velocity of grid deformation.  

2.3 Geometric Conservation Law 

In the computational domain, (ɝ, ɖ, Ű), equation (3) can be rewritten as: 
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π (19) 

The current solution strategies can be extended to dynamic, deforming meshes, if the 

discrete governing equations satisfy the Geometric Conservation Law (GCL). The GCL is 

expressed as: 
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(20) 

Of these, the second and the third equations are independent of time and are automatically 

satisfied, if spatial metrics, like the components of the Jacobian matrix, are computed in an 

exact manner [27]. The first equation can then be introduced into equation (19), yielding 

the following expression: 
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The above equation represents the fluid conservation equations, written in a form 

that satisfies the GCL. The residual form of the governing equation and is particularly 

advantageous as it converts a partial differential equation to a first-order ordinary 

differential equation in time, which can be marched using suitable Runge-Kutta methods. 

Further, this form is compact, in that, the time derivatives of Qf at any cell is expressed in 

terms of the residual of the same cell, which makes the method suitable for parallelization. 

2.4 Structural Dynamics Equations 

The structure model employed herein uses a two-dimensional, harmonic oscillator, 

for which the motion is governed by the equations: 

 

άὨ ὯὨ  Ὢὸ 

άὨ ὯὨ  Ὢὸ 

(22) 

Here, m represents the mass term, dx and dy are the displacements, while Ὠ and Ὠ  the 

accelerations along x- and y- directions. In each equation, the spring constant is denoted by 

k while fx and fy are the net forces along x- and y-, acting on the body. If the nodal 

displacements and velocities of the structure can be expressed as a vector Qs, where: 
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Equation (22) can then be rewritten as a first-order ODE, in matrix form as: 
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Where  
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2.5 Implicit Runge-Kutta Methods 

The governing equations, expressed in equation (21) can be marched in time using 

a suitable Runge-Kutta scheme. In this report, we explore the Explicit first stage, Single 

diagonal, Diagonally Implicit Runge-Kutta (ESDIRK) [6] scheme. ESDIRK are a family 

of very commonly implemented implicit RK methods for ODE initial value problems 

(IVP). As the name suggests, the residual evaluation in the first stage is done explicitly 

and, for the remaining stages, implicitly. The Butcher tableau and stage-wise updates of a 

variable, Q, for a four-stage ESDIRK takes the form: 
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(26) 

 

╠  ╠  Ўὸ ╡ Ўὸ╡  

╠  ╠  Ўὸ ὦ╡  

(27) 

For an n-stage ESDIRK, the implicit stages 2, 3 é n have the same diagonal-

element in the Butcher tableau (Appendix (B)), ɔ. For each implicit stage, the solution 

update takes the form of equation (27), where the first and second terms on the right hand 

side are known from the previous time-step and RK sub-iterations, respectively. Thus, only 

the last term on the RHS is unknown and is solved using suitable linearization and iterative 

methods. This makes implementing ESDIRK advantageous over fully implicit Runge-

Kutta schemes, in that, stage-wise solution updates can be obtained. The stage-wise updates 

are second-order accurate. The higher stage-order comes at the cost of algebraic stability, 

which are mutually exclusive for DIRK-type methods [10,11]. For integrating stiff 

problems, a stage-order of two, in addition to L-stability (Appendix (A)) and stiff accuracy, 

have been proven to be useful [7]. To meet these goals, ESDIRK schemes are designed to 

be L-stable and stiffly accurate while prioritizing higher stage-order over algebraic 

stability. The explicit first stage permits the first stage to be second-order, which would 

otherwise reduce to a BDF1 step, making it locally first-order [11,24]. 
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For the two-dimensional, compressible, GCL-compliant, Euler equations, an 

implicit ESDIRK sub-iteration, s, can be formulated as follows: 

 

╠ ╠ Ўὸ ╡ Ўὸ╡  

Ḉ
╠ ╠

Ўὸ

ρ


╡ ╡ ╠  

(28) 

In the above equation, the subscript c indicates the quantity (Q or R) evaluated at the current 

cell in a spatial sweep. The residual at the time-level, n+cs, is not known but can be 

computed through linearization using a first-order Taylor expansion. Thus, for the most 

recently updated solution (*) 

 ╡ ╠ᶻ ╡ ╠ȟ╠ ȟὺ
╡

╠
Ў╠

╡

╠
Ў╠  (29) 

Here, the subscript, nb, indicates variables at 4 neighboring cells and vg is the local grid 

velocity. Substituting the above linearization in equation (28) and rewriting æQn+1 = Qn+1  ֒

Qn, yields: 

 
Ὅ

Ўὸ

╡

╠
Ў╠

ρ


╡ Ὑ ╠

╡

╠
Ў╠  (30) 

Evaluating the Jacobians, 
╡

╠
 requires four times as many computations as doing 

so for  
╡

╠
. This may be avoided using a similar linearization for the last term in the above 

equation: 
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Ὅ

Ўὸ

╡

╠
Ў╠

ρ


╡ ╡ ╠ ȟ╠ ȟὺ

╡

╠
Ў╠  (31) 

In the above expression, we have eliminated the direct influence of the neighboring cells, 

thereby reducing the system to a series of point-wise updates. The local solutions to this 

system need to be globally smoothed, to account for the influence of neighboring cells. The 

smoothing is carried out using the Symmetric Gauss-Seidel (SGS) method. The time-level, 

n+1, can be replaced by the next iteration count, k+1, on the LHS and by the most recently 

computed values, indicated by the superscript, * , on the RHS. The above equation can then 

be rewritten as: 

 
Ὅ

Ўὸ

╡

╠
Ў╠

ρ


╡ ╡ ╠ᶻȟ╠ᶻȟὺ

╡

╠
Ў╠ᶻ (32) 

 
Ὅ

Ўὸ

╡

╠
╠ ╠

ρ


╡ ╡ ╠ᶻ

╡

╠
╠ ╠  (33) 

 
Ὅ

Ўὸ

╡

╠
╠ ╠

ρ


╡

╠ ╠

Ўὸ
╡ ╠ᶻ  (34) 

The Jacobian 
╡

╠
 is calculated using finite differences, using a small perturbation, ŭQc, in 

the vector of solution variables, as follows: 

 
╡

╠

╡ ╠ ╠ȟ╠ ╡ ╠ȟ╠

╠
 (35) 
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The inverse of 
Ў

╡

╠
 is computed directly using LU decomposition, on a cell-by-cell 

basis, and ╠  is updated using equation (34). The locally updated values are smoothed 

over the entire domain using Symmetric Gauss-Seidel sweeps, thus completing the global 

implicit solve. After kmax Gauss-Seidel sweeps, the solution converges to a result which is 

assigned to Qn+1. The advantage of this approach is that a direct-inversion implicit solve is 

done locally and helps avoid the need for constructing a global matrix over the entire grid. 

It is important to note, however, that the size of the system of equations represented 

by (34) is a function of the spectral difference order and the dimensions of the problem. 

The relation between the size of the matrix, defined per element, and the above parameters 

is: 

 ὛὭᾀὩὔ ὔ ὔ ὔ  (36) 

In the above equation, Neq denotes the number of equations to be solved, N the order of SD 

and ndim the dimensions of the problem. For example, while solving a two-dimensional 

problem with four state variables (ɟ, ɟu, ɟv, ɟe) using a third-order SD method, the resulting 

system of cell-by-cell equations will be represented by a matrix of size (36x36). This is 

important to remember as a choice of the order of solution must be made, which influences 

the memory requirements and the number of computations required per cell.   
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3 Fluid-Structure Interaction Coupling  

In this thesis, the fluid and structure subsystems are coupled in a partitioned 

manner, and marched in time using implicit-explicit (IMEX) Runge-Kutta integration, also 

known as additive Runge-Kutta (ARK) schemes. Such time integration schemes were 

introduced by Kennedy and Carpenter [10] for convective-diffusive-reactive flows, where 

the non-stiff and stiff flux terms could be identified and separated. The non-stiff terms are 

integrated using an explicit Runge-Kutta (ERK) while the stiff terms are integrated using 

suitable implicit Runge-Kutta (ESDIRK) schemes.  

For the present FSI coupling, we extend this approach by integrating the fluid-solid 

coupling term using a suitable explicit RK scheme (ERK) while the fluid and the remaining 

solid residuals are integrated using an ESDIRK scheme of the same number of stages, 

described in section 2.5. Consider the equation governing the dynamics of the fully-

coupled fluid-solid system: 

 ╠ ὃ╠ π (37) 

In the above equation, Q represents the combined solution vector of the fluid-solid system 

and A is a matrix containing the spatial differential operators and fluid-solid coupling 

terms. 

 ╠
╠

╠
ȟ ὃ

ὃ ὃ

ὃ ὃ
 (38) 

The system represented by equation (37), can be integrated using ESDIRK as follows: 
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 ╠ ╠ Ўὸ ὃ╠ Ўὸ ὃ╠  (39) 

The terms of the time-level n+cs can be combined to yield the following expression: 

 ╘ Ўὸ ὃ╠ ╠ Ўὸ ὃ╠  (40) 

To solve the above equation, the inverse of ╘ Ўὸ ὃ must be computed, which for 

most FSI problems, is non-trivial. In such cases, the matrix A may be first split by 

segregating the fluid-solid coupling term, Asf, from the remainder as follows:  

 ὅ  
π π
ὃ πȟ ὃ ὅ

ὃ ὃ

π ὃ
 (41) 

The fluid-solid coupling term, C, can be integrated explicitly. Now, one of two approaches 

may be followed, to maintain the integration order of accuracy:  

1. Couple the two subsystems strongly, that is, implement multiple block Gauss-

Seidel iterations within each RK sub-iteration. 

2. Formulate a high-order prediction for loosely coupled systems, which may be used 

as the initial guess.  

Choosing one of the two approaches depends largely on characteristics of the 

problem, such as the ratio of fluid to solid density. In principle, large deformations need to 

be modeled through a strong coupling between the flow and structure solvers. The Gauss-

Seidel iterations can be incorporated into equation (39) as follows: 
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 ╠ ╠ Ўὸ ὃ╠ Ўὸ ὃ ὅ╠ Ўὸ ὅ╠  (42) 

The superscript k indicates the Gauss-Seidel iteration number. The FSI presented in the 

current research is limited to interaction between small, linear perturbations of the fluid 

and an attached solid. It is reasonable to couple such a system loosely. Thus, the number 

of GS iterations is limited to 1. Thus, the above equation may be rewritten as: 

 ╠ ╠ Ўὸ ὃ╠ Ўὸ ὃ ὅ╠ Ўὸ ὅ╠  (43) 

Here, Q0 is the initial guess for SGS iterations. Choosing this guess trivially as Qn is suitable 

for first-order accurate integration schemes. For higher-order schemes, a prediction must 

be made for the coupling term. State predictors were previously proposed by Piperno and 

Farhat [20,21,22] for first- and second-order time integration. These were suitable for 

single-stage integration schemes, like the BDF2 and the trapezoidal rule. Recently, van 

Zuijlen [24] proposed a prediction algorithm for coupling systems integrated using multi-

stage Runge-Kutta schemes. The FSI implementation herein follows this algorithm, 

wherein the fluid-to-solid coupling is integrated using an ERK, while the fluid and solid 

subsystems are integrated using ESDIRK. Equation (39) can be rewritten as: 

 ╠ ╠ Ўὸ  ὃ ὅ╠ Ўὸ ὅ╠  (44) 
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Where   are coefficients of an ESDIRK scheme and   are those of an ERK of the same 

number of stages. The summation representing the ESDIRK integration can be split as 

follows: 

╠ ╠ Ўὸ ὃ╠ Ўὸ ὃ ὅ╠ Ўὸ ὅ
 


╠  (45) 

Here, we see that the predicted initial guess is computed as: 

 ╠
ίὭ ίὭ

ίί
ὅ

ίρ

Ὥρ

╠ὲ ὧὭ (46) 

In this manner, we have two sub-systems, each marched implicitly while the 

coupling between is predicted explicitly, at each sub-iteration, resulting in an IMEX 

coupling. The algorithm for this coupling scheme may be summarized as shown below 

(Figure 3). It is important to note that in the above coupling algorithm, the structure must 

be advanced first in each implicit RK sub-iteration, since the fluid-to-solid coupling 

(pressure) prediction is evaluated explicitly.  
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IMEX -RK coupling scheme: 

Stage 1 (Explicit): 

1. Assign traction (coupling) term († †) and residuals (ὙȾ ὙȾ ). 

2. Update time. 

For stage i =  2, s (Implicit): 

1. Predict traction term  

†ǿ
ὭὮ ὭὮ

ὭὭ

Ὥρ

Ὦρ

†  

2. Advance Qs using LU-SGS: 

╠ ╠ Ўὸ  ╡ Ўὸ╡ ╠ ȟ†ǿ  

3. Update mesh and advance Qf using LU-SGS: 

╠ ╠ Ўὸ  ╡ Ўὸ╡ ╠ ȟ╠  

4. Update fluid residual, ╡ . 

5. Compute force/ torque on structure and compute traction term, † . 

6. Update structure residual, ╡ . 

7. Update time. 
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Figure 3: Schematic of the IMEX coupling scheme: (1) Predict fluid-to-solid coupling term, (2) 

implicit solve of structure equations and update solid residual, (3) compute solid-to-fluid coupling 

term and update mesh, (4) implicit solve of fluid equations and update fluid residuals, update time. 
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4 Results and Discussion 

The solver was tested in the context of several benchmark problems, each serving 

a part in contributing to a thorough validation of the implemented numerical methods. The 

choice of problems was such that analytic solutions are available for each of them, making 

it easy to verify the obtained results. In the following subsections, we simulate a free-

stream preservation case to test the correct implementation of the GCL, a transient problem 

to demonstrate the spatial and temporal accuracy of the flow solver and, finally, a coupled 

FSI problem to test the fidelity of the IMEX coupling. 

4.1 Supersonic Vortex Preservation  

The first set of simulations was performed to test the preservation of an inviscid, 

isentropic, supersonic vortex in a curved channel. The flow is defined between two circular 

arcs, such that the Mach number of the flow varies inversely as the radius and no shocks 

are generated.  The density stratification is given by the law:  

 ”ὶ ” ρ
 ρ

ς
ὓ ρ

ὶ

ὶ
 (47) 

In the above equation, Mi, pi and ɟi are the Mach number, pressure and density at the inner 

radius, r i, of the channel, respectively, and are set to 2.25, 1.0 and 1/ɔ. The inner and outer 

radii of the channel are 1.0 and 1.384, respectively. The variables at inner curve was fixed 

with these values while the outer channel and the bottom inlet boundary was set to 

analytical solutions. The zero-gradient extrapolation boundary condition is used at the 
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upper outlet boundary. Such a benchmark was previously tested in [1,16,17,18] and the 

steady-state solution for density stratification is shown in Figure 4 (a). 

 

Figure 4: (a) The 4x16 grid used for supersonic, isentropic vortex case and (b) contours of steady-

state analytical denisty. 

The flow characteristics were tested, first, on a fixed grid and then on a grid in 

which the interior nodes were deformed. The grid deforming strategy ascribes analytic 

motion to the interior nodes, which is defined by the following equations: 

 

Ὠὶ—ȟὸ  ὙÓÉÎτὲ—ÓÉÎ
τ“ὸ

Ὕ
 

ό —ȟὸ  
τ“Ὑ

Ὕ
ÓÉÎτὲ—ÃÏÓ

τ“ὸ

Ὕ
 

(48) 

In the above equations, dr and ugr represent the radial displacement and velocity of the grid, 

at angular position ɗ and time t. R0 and T0 are the amplitude and period of grid deformation, 

while n represents the wave number of the fluctuations in dr as a function of ɗ. The solverôs 
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accuracy was tested using R0 as 0.05 and T0 as 50.0. It was observed that the flow 

characteristics were not distorted with grid deformation (Figure 5 (b), (c)). 

 

Figure 5: Illustration of grid deforming strategy for the supersonic, isentropic vortex preservation 

test case, over contours of density. Case (a) shows the initial grid configuration, while (b) and (c) 

depict exaggerated grid deformations at instants of the two maximum deformations. 

Three grids with quadrilateral elements (sample grid shown in Figure 4 (a)) were 

tested, using a third-order ESDIRK, for third- and fourth-order SD. The L1 and L2 error 

norms of fluid density, relative to analytic values are computed as shown in equation (49).   

 

ὒ
ρ

ὔ ὔ
”ȟȟ ”ȟȟ  

ὒ
ρ

ὔ ὔ
”ȟȟ ”ȟȟ  

(49) 

In the above equations, Ncell is the number of cells in the domain and i and j loop over the 

N solution points, each along ɝ and ɖ. The error norms for spatial accuracy tests, using 

stationary and deforming grids are summarized in Table 1 and Table 2.   
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Number 

of cells 
L1 Norm 

Order of 

accuracy 
L2 Norm 

Order of 

accuracy 

Spatial accuracy of third-order Spectral Difference on stationary grids 

16 1.473146726992E-003 ð 1.839382528909E-003 ð 

64 1.978959801609E-004 2.89609 2.670281111337E-004 2.78416 

256 2.533371317083E-005 2.96561 3.533627858063E-005 2.91777 

Spatial accuracy of third-order Spectral Difference on deforming grids 

16 1.517664602923E-003 ð 1.869880318360E-003 ð 

64 2.051708327068E-004 2.88696 2.748845343365E-004 2.76605 

256 2.738565278697E-005 2.90533 3.733421765182E-005 2.88026 

Table 1: Results of spatial accuracy tests using third-order spectral difference (SD3) method for 

supersonic vortex test case, using stationary and deforming grids. 

Number 

of cells 
L1 Norm 

Order of 

accuracy 
L2 Norm 

Order of 

accuracy 

Spatial accuracy of fourth-order Spectral Difference on stationary grids 

16 6.386371029042E-005 ð 7.501834469691E-005 ð 

64 4.033657906044E-006 3.98484 4.983693745637E-006 3.91195 

256 2.638516958654E-007 3.93429 3.307180795540E-007 3.91354 

Spatial accuracy of fourth-order Spectral Difference on deforming grids 

16 6.358625356358E-005 ð 7.596497779099E-005 ð 

64 3.988446000281E-006 3.99481 5.231788587190E-006 3.85996 

256 2.564979567797E-007 3.95881 3.593719600290E-007 3.86375 

Table 2: Results of spatial accuracy tests using fourth-order spectral difference (SD4) method for 

supersonic vortex test case, using stationary and deforming grids. 

Order of accuracy of a scheme is a measure of the rate at which an approximation of a 

differential equation, provided by a numerical scheme converges to the exact solution, up 

to machine precision. For example, a second-order scheme tested over two grids which 

differ in resolution by a factor of 2, would result in errors which are apart by a factor 4. 

The above results are also illustrated in Figure 6. We see that nearly third- and fourth-

orders of accuracy were achieved using the respective SD methods and that the accuracy 

was not contaminated by the implementation of high-order implicit time-stepping or mesh-

deformation. 
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Figure 6: Results for grid independence studies for inviscid, isentropic supersonic vortex 

preservation benchmark problem using (a) third-order and (b) fourth-order spectral difference 

method. 

Further, the solver was tested for its ability to preserve steady flow. The following 

results summarize simulations of supersonic, isentropic vortex preservation on deforming 

grids. To avoid contamination of accuracy due to spatial discretization, an eighth-order 

spectral difference method was employed on the grid illustrated in Figure 5. A sufficiently 

small ȹt =  4.0e-4 was used and the simulation was allowed to run long enough that changes 

in residuals were no longer significant. Since there are no transient effects, and a steady 

flow is attained, the error norms would not demonstrate the design temporal orders of 

accuracy. The absence of transient errors and elimination of spatial errors should result in 

small error norms, with no appreciable scaling, as shown in Table 3 and Table 4.  
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Time-

step (æt) 
L1 Norm 

Order of 

accuracy 
L2 Norm 

Order of 

accuracy 

Temporal accuracy of BDF2 on stationary grids 

8.0E-4 8.956200581514E-012 ð 1.701650039219E-011 ð 

4.0E-4 8.913939627663E-012 0.00682 1.694894219692E-011 0.00574 

2.0E-4 9.309527920688E-012 -0.06264 1.695783044602E-011 -0.00076 

1.0E-4 9.363611557129E-012 -0.00836 1.696528942577E-011 -0.00063 

Temporal accuracy of BDF2 on deforming grids 

8.0E-4 9.052603176622E-012 ð 1.703457002157E-011 ð 

4.0E-4 8.921354621846E-012 0.02107 1.695006393168E-011 0.00717 

2.0E-4 8.903132300407E-012 0.00295 1.693109619678E-011 0.00161 

1.0E-4 8.899893842728E-012 0.00052 1.692565940459E-011 0.00046 

Table 3: Results of temporal accuracy tests using second-order backward difference (BDF2) 

scheme for supersonic vortex test case on stationary and deforming grids. 

Time-

step (æt) 
L1 Norm 

Order of 

accuracy 
L2 Norm 

Order of 

accuracy 

Temporal accuracy of ESDIRK4 on stationary grids 

8.0E-4 8.899614850404E-012 ð 1.692824767332E-011 ð 

4.0E-4 8.899283464010E-012 0.00005 1.692773872775E-011 0.00004 

2.0E-4 9.367858702299E-012 -0.07403 1.696468077984E-011 -0.00314 

1.0E-4 9.371889928607E-012 -0.00062 1.696516080457E-011 -0.00004 

Temporal accuracy of ESDIRK4 on deforming grids 

8.0E-4 8.899614606459E-012 ð 1.692824222158E-011 ð 

4.0E-4 8.899254326077E-012 0.00006 1.692771513034E-011 0.00004 

2.0E-4 9.661679063136E-012 -0.11859 1.715427705652E-011 -0.01918 

1.0E-4 9.367808856105E-012 0.04456 1.695939246834E-011 0.01648 

Table 4: Results of temporal accuracy tests using third-order ESDIRK4 scheme for supersonic 

vortex test case on stationary and deforming grids. 
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Figure 7: Summary of simulation results for supersonic, isentropic vortex preservation case, on 

stationary and deforming grids, using (left) second-order backward difference (BDF2) and (right) 

third-order ESDIRK4. 

4.2 Euler Vortex Propagation 

Next, the propagation of a two-dimensional, isentropic Euler vortex is considered. 

The vortex is advected along the x-direction. All domain boundaries use a periodic 

boundary condition with the dimensions of the domain representing the period along the 

respective direction. Since the flow is inviscid, the vortex should ideally not dissipate. 

Thus, any deviation from the initial vortex characteristics (amplitude/ width) can be 

considered as numerical error. The initial conditions are given by the following equations: 
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(50) 
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ὴὶ  ρ
ρ

ς
 ρὟ Ὡ  

In the above expressions, the velocity, density and pressure (u, ɟ and p) are functions of 

the radius, r, measured from the eye of the vortex. The velocity perturbation is denoted by 

Uômax, and b is a constant. The pressure initial condition along with one of the test grids are 

shown in Figure 8. 

 

Figure 8: (a) Pressure initial condition for the Euler vortex on the 40x40 grid and (b) the 

propagated vortex, at a later instant, on a deformed grid. 

Simulations were performed on several static and deforming meshes. The mesh is 

deformed using the following laws: 
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