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Abstract of Thesis

Implicit -Explicit Time stepping for a Two-Dimensionallnviscid Fluid -Structure
Interaction Solver

This thesis describes the development of a-dweensional, higkorder, fluid-
structure interaction (FSI) solver. &@vellestablished spectral difference (SD) method is
used for spatial discretization of the Euler equations over deforming, unstructured
guadrilateral grids. The Geometric Conservation Law (GCL) is incorporated into the
conservative Euler equations, befadiscretization. After simplification, the equations
reduce to a form, in the computational domain, identical to the equations in the physical
domain. In this form, the equations can be integrated implicitly in time, without the
requirement of any additial source term, to guarantee fisge2am preservation. The fluid
and structure subystems are individually integrated in time using the explicit first stage,
single diagonal, diagonally implicit Rung@utta (ESDIRK) methodAs the first step to
solvingthe coupled, nofinear Euler equations, implicit in timeg linearizehe governing
equations. The resulting linearized simultaneous equations are then setyeshtially
using lowerupper symmetric GausSeidel (LUSGS) relaxation sweeps. The fluid and
structure suisystems are loosely coupled and the coupling term is integrated in time using
an explicit RK method, resulting in an impliakplicit (IMEX) RK coupling. The spatial
accuracy and the fregreampreservingability of the solver are demonsted by testing a
supersonic, isentropic vortex in a curved channel. Next, the temporal accuracy of the solver
is established using an Euler vortex propagation test itaselso demonstrated that the
four-stage ESDIRK is capable of handling thsteps B times largethan the fowstage

explicit RK. In each of these cases, thieshd fourthorder SD for spatial discretization and



secondorder backward difference (BDF2) and thodder, four stage ESDIRK for time
integration were tested. Since thmose (explicit) FSI coupling restricts permissible
structural deformation, we limit ourselves to small harmonic oscillations resulting from
linearized perturbed Euler equations. The interaction between a linear piston and an
inviscid, compressible fluics simubted to demonstrate that the IMEX coupling does not
contaminate the spatial or temporal accuracy of the implementeebtdgh methods.
Through rigorous testinghis development is expected to kafoundation for a powerful

computational framework forariousfluid-structure interaction problems.
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1. Introduction

Advances in computing technology have made it possible to obtain numerical
simulations of fluidstructure interaction (FSI) problems of evecreasing complexity.
Simulating FSI problems comes under the larger umbrella of multiphysics modéierg,
more than one set of governing equations dictate the progress of the system. Typically,
specialized software is available, or developed, to deal with any one set of those equations.
However, the challenge faced by FSI solvers, rather the essen& wioBeling, is the
accurate representation of the coupling between the two sets of equBtierselvers for
the fluid and solid subsystems may be coupled using monolithic or partitioned approaches.
In monolithic coupling, the equations representing tlymamics of fluid and solid
subsystems are expressed in a common form and marched simultanédusty.the
equations of the subsystems cannot be expressed in the same form, they can be individually
marched in time and coupled in space and time to accaunthé influence of the
subsystems on each otheesulting in a partitioned (segregated) coupli®g the two
approaches, partitioned couplipgrmits the reuse of existing fluid and structure solvers,

while not requiring a complete overhaul of the code.

It follows naturally that matching the accuracy of the coupling with that of the fluid
and structure solvers is important for the accuracy of the individual solvers to be
meaningful. The surge of highrder methods for spatial discretization, such as
discantinuous Galerkin (DG) and spectral difference (SD), motivated efforts towards
implementingefficient highorder time integratiorschemesWhile explicit multistage

RungeKutta schemes are easy to implement, the stability constraints they impose make



themless favorablemplicit methods do not suffer from the same stability issaed help
afford a larger timestep,but are relatively expensive. Thud, late, efforts have been
extended towards reducing the costmplicit time marching.Persson and Paire [19]
compared several methods for obtaining solwtonmplicit systems of equations for the
DG method andconcluded that the restarted generalized minimal residual (GMRES)
method, coupled with pl1-ILU (0) preconditionerwas most suitable. A different approach
was adopted biiang et al. 8], whodemonstrated that a firstder backward difference
(BDF1) integration scheme, coupled wdhthreelevel p-multigrid method andsuitable
implicit smoothers, was capable of producing speedups of nearly two orders of magnitude
for two-dimensional scalar convection and Euler equatioaspared to its fully explicit
counterpartsfor the spectral difference method (SD) on fixed simplex gridset al.[27]

used the secondrder backward difference (BDF2) scheme for thdemensional
compressible flows for thED methodoverdeforminghexahedragrids Cox et al. §] used

a similar implementatiorwith the flux reconstruction (FR) method for an artificial
compressibility based twdimensional, incompressible flow solvérhyperbolic system
was driven to steadstate in pseudtime using BDF1 suliterations, every physical time
step, to satisfy thdivergenceree constraintand te solution was advanced physical

time using BDF2 The combination was found to perntime-steps two orders of
magnitude larger than those permitted by a tbndkr, explicit Rung&utta. In these three
studies, the mplicit system was solved locally using tdécomposition and relaxed

globally using symmetric Gauseidel (SGS) iterations.

While the larger timestep choice andhe stability offered by implicit time

integration makes them attractive for solving mulygibs problems, obtaining higirder



implicit FSI coupling may become computationally inefficiehtherefore, recent studies
have focused on retaining the robustness of implicit time integration, without making the
coupling between subsystems too expengiea result, implickexplicit (IMEX) coupling
schemes have recently gained traction. van Zuiéhdeveloped a class t¥IEX Runge

Kutta schemes fd¥SI coupling in which the fluid and solid sukystems and the stiff gar

of the fluid-solid coupling are integrated using suitable implicit ESDIRK) methods.

A high-order prediction for thaonstiff part of the coupling isnadeusing an explicit RK
(ERK). A similar study was conducted by Froeldgfpr the DG method with the implicit
solve for the Navie6 t o keguatibndeing done using Newton GMRES method with a

block ILU (0) or blockJacobi preconditioner.

Implicit time-integration evidently provides several advantageser explicit
schemesandrecent efforts havlelpedreduce associated computational overhe@tes
aim of the thesis, therefore, is to extend thHes@niques to an existing twbmensional
SD flow solver and develop a framework for modelilgd -structureinteraction.To that
end, heresearcldone for this thesignites ideas presentedthre studiesdiscussed above.
The widely discussed ESDIRK schengglD,11,24,28] is used to march the fluid and solid
subsystems andhe highorder IMEX coupling scheme of van Zuijle?] is implemented
using the spectral difference method for the -thimensional, comressible Euler
equations. A modification to the method of Yu et al] jwas recently proposed by Zhang
et al. R, so that multistage implicit RK methods can be used over deiimgngrids. In
acordance with this modification, the geometric conservation law (GCL) is incorporated
into the fluid equations before discretization. The ability of the solver to preserve free

streamover deforming grids isndicaive of correct implementation of the GCIThe



implicit solve for each subystem is carried out using the &GS smoother3[18,27] and
an explicit highorder prediction of the fluito-structure coupling is madin the form of

surface traction.

The thesis is organized as follov@hapter2 explains the discretization of the fluid
and solid governing equations in space and time. Ch&pdescusses the FSloupling
algorithm while chapte# showcases results of a systematic and rigorous validation of the

solver. The study is concluded in chagiemd future work is suggested.



2. Discretization of Governing Equations

2.1 Two-dimensionaEulerequations

The twadimensional, inviscid, compressiliilerequations may be expressed in

the conservation form as:

T_OT(JO 0 Tt
R SRR |
T_oo o 00 T T (1)
L S |
o Q'l'o‘o 0Q on n T

Here,} represents the fluid density; the velocly componentsp the normal stresses
(pressure)eis thespecifictotal energy of the systerandq the volumetric heat generation.
In two dimensions, the indices j range from 1 to 2The system is closed using the

following relation for energy:

"00 2)

In the above relatiorgis the isentropic constant for the fluithe conservation equations

can be written in the vector form as:

— T €))



where,Qr represents the vector of solution variables Breahd G are flux vectors in the

two directions.Qr can be expressed as:
0
E ") (4)
Q

The flux vectorsin the absence of heat generaticem be represented using ttodlowing

inviscid flux vectors:

” X

N - o]
o M ey g (5)
n ‘ n

2.2 Spectral Difference (SD) Method

The Euler equations are discretized incgpasing the spectral difference (SD)
method which is amongthe four commonly implementechigh-order discretization
methods for hyperbolic partial differential equationthe other three being the
discontinuous Galerkin (DG), spectral volume (SV) and there recent flux
reconstruction/ correction procedure via reconstruction (FR/CPR) methodstagjgered
grid Chebyshev multidomaimethodof Koprivaand Kolias[12,13,14] was developed to
overcome the difficulties of implementing standard Chebyshev spectral methods. In this
method, the computational domasdivided into multiple subdomairendwithin each
subdomain, the solution variables and fluxase reconstructed sing highorder
polynomials.The use of subdomains is doubly advantageous, in that, unlike traditional

spectral methods, this can be implemeraienindcomplex geometries. It also permits the

6



use of lowerorder approximation polynomials in each subdomaimich reduces
computationaloverheadsand facilitates the use ofarger time-steps.The method was
extended bylameson, Liu, May, Vinokur and Waff§15,26] and renamedsthe spectral

difference method.

In the SD method, elements in the discretized physical donxaiy, ¢) are
transformed to a square, standard element in the natural coordinate systety, (as
shown inFigurel (a), using suitable mapping functiara the computational domain, the

vectors representing the conserved solution variables and the diexesmputeds:
L L
P
3 |L
3 WL, T T (6)
o L
1 - 3- 7

WherelJ represents the Jacobian matrix, which along with its invarséefined as:
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Figure 1. (a) Transformation of an element in the physical domain to a standard element in the
computational domain (natural coordinates) and @)dut of solution and flux points within each
computational ell of third-order SD.

AsinKo p r imethod §2,13], arbitrarily high orders of accuracy are achieved
through smooth, polynomial reconstructions of solution variables and flwisn each
compuational cell. The solution and flux pointare staggered within each cell. Forih
order SD N points are required to construct a continuous solution polynomial of Nrder
1. The coordinates ofhese solution points,given by those of the Chebysh®aiss

Lobattopoints are chosen such that they facilit@eebyshevGaussian quadrature
~ . Gl Lo
p Al & P i phcfB ) (8)

Likewise, to construcan N orderflux polynomial, N+1 flux points are needed.hese
flux points aregiven bythe GaussLegendre pointsand include the two ends ofeh
computational cellThe intermediate flux points are the roots of the Legendre polynomial

of orderN-1 [8]. The Legendre polynomials are expresasiuhgthe following recursive

function



< 9)

A layout of the solution and flux points, staggered in a computational cell for sotiied
SD is illustrated inFigure 1 (b). A smodh reconstruction of the conserved solution

variables can be domwgthin the computational cellsing thefollowing tensor product:

R |

|
=3
=
Q-
I

(10)

Wheremy; are he Lagrange polynomial$igure 2), which are defined over solution and

flux points as follows:

(11)



o

Lagrange polynomials for solution points
Lagrange polynomials for flux points

ot
o
T

Figure 2: Lagrangepolynomials (a)m, me ... ms of order4 with location of solution pointand (b)
my, me ... m of order5 with corresponding flux point points, for & &rder SD,

Moreover, the derivatives of the solution variables can be reconstructed using the

derivatives of the polynomials. Therefore:

T Tao

i,h— F e — , & - (12)
T . 4 13
—|r_,h— IFrr &, — - (13)

Using equationsl@) and (3), the fluxess andy at any point wthin the computational
cell can be expressed directly using the solution variables within the saniskesliise,

the fluxes can also be reconstructed over the flux points as:

3, h- TRE & - (14)
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(15)

This formulation also permits easy computation of the flux derivatives, using the same
interpolation functions, as follows:
€

— TR B - (16)

—a
—a

—a

—a

. 3 17
1 Hd,gh_ (17)

The solution variabledk , can thus, be computed directly from the fluxes at the flux points

—a

and the corresponding interpolation functions. Thus, there exists a direct transformation

between the solution and flux vectors, within each computational cell.

The fluxes areontinuous within each cell, but discontinuous acrossrtelifaces.
A suitableRiemann solver must be employed to ensure the continuity of fluxes at the
interface. Care must also be takenatount for changes in eigenvalues of the Euler
equations on eforming grids.The fluxes are made continuous using a Rusanov solver

[23,27], in which the fluxes are computed as:

R, 3 Qe

A
NIo
A
A
€
Cc
£
@)
=
=

(18)

|©
2
=
—_

L -sd Q@0
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The subscripts andR indicate fluxesand conserved variables the left and ght sides
of the cell interfacegiis the average speed of souadijs the averaged normal velocity at

the cell interface and is the velocity of grid deformation.

2.3 Geometrc Conservation Law

In the computational domairs;d, U, equation 8) can be rewritten as:

—a
—a

'
To T T - n (19)

—a
|

The current solution strategies can be extended tonagnaleforming meshes, if the
discrete governing equations satisfy the Geometric Conservation Law (GCL). The GCL is
expressed as:

Tads T 98 T 95
To T, T—

TR T %
T, r-

n (20)

TS T &%
T, T—

Of these, the second and the third equations are independent of tiare aoudomatically
satisfied, if spatial metrics, like the components of the Jacobian matrix, are compared
exact maner [27]. Thefirst equation anthenbe introduced into equatiod9), yielding

the following expression:

12
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The above equation represents the fluid conservation equations, written in a form
that satfiesthe GCL.The residual form of the governing equation and is particularly
advantagegs as it converts a partial differential equation to a-@rder ordinary
differential equation in time, which can be marched using suitable Rduie methods.
Further, this forms compact, in that, the time derivatives@fat any cell is expressea

terms of the residual of the same celhichmakes the method suitalite parallelization.

2.4  StructuralDynamicsEquations

The structure model employéérein uses a twdimensional, harmonic oscillator,

for which the motions governed by the equatians

~

aQ ™ Qo
(22)

~

aQ M Qo

Here,m represents the mass terdh,anddy are the displacements, whif¢ and'Q the
accelerationslongx- andy- directions.In each eqation, the spring constant is denoted by
k while fx and fy are the net forces along andy-, acting on the bodyif the nodal

displacements and velocities of the structure can be expressed as &yegtwre:

13



Forg - (23)
e O
Equation 22) can then be rewritten as a fimtder ODE, in matrix form as:
0 ) )
golf 8l O (24)
Where
T T p T T
L T T p T
0 xa n r nh©o (25)
Tt o T T Q

2.5 Implicit RungeKutta Methods

The governing equations, expressed in equaflithdan be marched in time using
a suitable Rung&utta scheme. In this report, we expldhe Explicit first stage, Single
diagonal,Diagonally Implicit RungeKutta (ESDIRK)[6] schemeESDIRK are a family
of very commory implemented implicit RK methods for ODigitial value problems
(IVP). As the name suggests, the residual evaluation in the first stage is done explicitly
and, for tke remaining stages, implicitithe Butcher tableaand stagevise updatesof a

variable,Q, for a fourstage ESDIRKakes the form

14



(z) T T 1 T
W | ' m =
(¢) | | r Tt (26)
W | | | I
W W W W
F FooYo 1 4 Yo 4
(27)

For ann-stage ESDIRK, the implicit stages 2,6 n have the same diagonal
element in theButcher tablea{Appendix (B)), 2. For each implicit stage, the solution
update takes the form of equati@7), where the first and second terms on the right hand
side are known from the previotise-step and RK sufierations, respectively. Thus, only
the last term on the RHS is unknown a@siolved using suitablénearization and iterative
methods. This makes implementing ESDIRK advantageous over fully implicit Runge
Kutta sclemes, in thastagewise solution updates can be obtaingtke stagevise updates
are seconabrder accuratelhe higher stagerder comes at the cost of algebraic stability,
which are mutually exclusive for DIRK/pe methods 10,11]. For integrating stiff
problems, a stagerder of two, in addition tb-stability (Appendix(A)) and stiff accuracy,
have been proven to loseful [7]. To meet these goalESDIRK schemes are designed to
be L-stable and stiffly accuratewhile prioritizing higher stageorder over algebraic
stability. The explicit first stage permits the first stage to be secwddr, which would

otherwise reduce to a BDF1 step, making it localigtforder[11,24].

15



For the twedimensional, compressible, G&lompliant, Euler equations, an

implicit ESDIRK subiteration,s, can be formulated as follows:

(28)

In the above equation, the subscdpidicateghe quantity Q or R) evaluated at the current
cell in a spatial sweep. The residual at the tiewel, n+cs, is not known but can be
computed through linearization usindiest-order Taylor expansion. Thus, for the most

recently updated solution (*)

Z - E. 4
Y s =

Here, the subscriphb, indicatesvariablesat 4 neighboring cell@ndyvy is the local grid
velocity. Substituting the above linearization in equat8) &énd rewritingeeQ"** = Q"1

Q", yields:

0
0

—n

—nu
A
L
?

N P :
I

F )

<
—a
?

[

—a

Evaluating the Jacobia,nﬂ— requires four times as many computations as doing
r

so for % This may be avoidkusing a similar linearization for the last term in the above
r

equation:

16



Yl (31)

In the above expression, we have eliminated the direct influence of the neighboring cells,
thereby reducing the system to a series of pwieé updates. The local solutions to this
system need to be globally smoothiedaccount for the influence of neighboring cells. The
smoothing is carried out usiige Symmetric GausSeidel (SGS) method. Thiene-level,

n+1, can be replaced by the next iteration colial, on the LHS and by the most recently

computed values, indated by the superscrjpit on the RHSThe above equation can then

be rewritten as:

"O T=| Y p zZllz o T=| 7|l z

Vo T Yl oo 1 4 A TTYF (32)
O 1 p . T

N T
o 14 p FoIF .

Vo T IF IF - 8 _rr%r 1 I (34)

The JacobiaFﬁT is calculated using finite differences, using a small perturbaii@g,in
r

the vector of solution variables, adléovs:

(35)

17



1

The inverse of—y s is computed directly using LU decompositiam a ceHby-cell
r

basis and |} is updated using equatioB4). The locally updated values are smoothed
over the entire domain using Symmetric Ga8se#lel sweeps, thus completing the global
implicit solve. Afterkmax GaussSeidelsweepsthe solution converges &xesult which is
assigned t@Q"**. The advantage of this approach is that a diraatrsion implicit solve is

done locally and helps avoid the need for constructing a global matrix over the entire grid.

It is important to note, however, that the size of the system of equations represented
by (34)is a function of the spectral difference order and the dimensions of the problem.
The relation between the size of the matrix, redi per element, and the above parameters

is:
YQ D 0 0 0 (36)

In the above equatioiegdenotes the number of equations to be solMete order of SD

and ngim the dimensios of the problem. For example, while solving a ‘swmensional
problem with four state variablgs { u , } jusing a thirdorder SD method, the resulting
system of celby-cell equations will be represented by a matrix of size (36x36). This is
importart to remember as a choice of the order of solution must be, nvads influences

the memory requirements and the number of computations required per cell.
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3 Fluid-Structure Interaction Coupling

In this thesis the fluid and structure subsystems are calipte a partitioned
manner, and marched in time using imptexplicit (IMEX) RungeKutta integration, also
known as additive Rungéutta (ARK) schemes. Such time integration schemes were
introduced by Kennedgnd Carpentdrl(] for convectivediffusive-reactive flows, where
the nonstiff and stiff flux termscouldbe identified and separated. The +stiff terms are
integrated using an explicit Rungfaitta (ERK)while the stiffterms arentegrated using

suitable implicit Rungéutta (ESDIRK) schemes.

For the present FSI coupling, we extend this approach by integrating thedligid
coupling term using a suitable explicit RK scheme (ERK) while the fluid and the remaining
solid residuals are integrated using an ESDIRK scheibeosame number of stages,
described in sectio.5. Consider the equation governing the dynamics of the -fully

coupled fluidsolid system

F ol m 37)

In the above equatioQ) represents the conmed solution vector of the fluidolid system
and A is a matrix containing the spatial differential operators and -8oldl coupling

terms.

|
-y
o

5 6 (38)

Thesystenrepresented byquation 87), can be integrated using ESDIRK as follows:
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Yo 1 6 Yo 8 (39)
The terms of the timéevel n+cs can be combined to yield the following expression:
Lva ok Yo o o (40)

To solve the above equation, the inverse bf ¥4 6 must be computed, whicloif
most FSI problems, is nemvial. In such casesthe matrix A may befirst split by

segregating th#uid-solid coupling termAsr, from the remainder as follows:
0 5 ah 0 O o (41)

The fluid-solid coupling termC, can bantegratedexplicitly. Now, one of two approaches

may be followedto maintain the integration order of accuracy

1. Couple the two subsystems strongly, that is, implement multiple block Gauss
Seidel iteratios within each RK suitteration.
2. Formulate a higtorder prediction for loosely coupled systems, which may be used

as the initial guess.

Choosing one of the two approaches depends largely on characteristics of the
problem, such as the ratio of fluid to sbdlensity. In principle, large deformations need to
be modeled through a strong coupling between the flow and structure sbheGauss

Seidel iterations can be incorporated into equaG®ds follows:
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Yo 1 o Yo o 6 Yo of (42)

The superscripk indicates the GausSeidel iteration numbeiThe FSI presented in the
current research is limited to interactionvaeén small, linear perturbations of the fluid
and an attached solid. It is reasonable to couple such a system |dbsethe number

of GS iterations is limited to Thus, the above equation may be rewritten as:

Fose ek e b sk % sk

Here,QCis the initial guess for SGS iterations. Choosing this guess trivial) issuitable

for first-order accuratintegration schemes:or higherorder schemes, a prediction must

be made for the coupling term. State predictors were previously proposed by Piperno and
Farhat P0,21,22] for first- and second-order time integration. These were suitable for
singlestage integration schemes, like the BDF2 and the trapezoidal rule. IRegant
Zuijlen[24] proposed a prediction algorithm for coupling systems integraid)multi-

stage Rung&Kutta schemesThe FSI implementationherein follows this algorithm
wherein the fluigto-solid couplingis integrated using an ERK, while the fluid and solid

subsystms are integrated using ESDIRK. EquatiBA)(can be rewritten as:

Yo 1 8 8 Yo | &f (44)

21



Wherg are coefficients of an ESDIRK scheme andare those of an ERK of the same
number of stags. The summation representing the ESDIRK integration can be split as

follows:

Fove 18k Yo s 6F Yo s ——F  as

Here, we see that the predicted initial guess is computed as:

ip

e @
o | i

p

In this manner, we have two sslstems, each marched implicitlyhile the
coupling between is predicted explicitly, at each-geafation, resulting in an IMEX
coupling. The algorithm for this coupling scheme maysbmmarizedas shown below
(Figure3). It is important to notehiat in the above coupling algorithm, the structure must
be advanced first in each implicit RK sitbration, since the fluido-solid coupling

(pressure) prediction is evaluated explicitly.
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IMEX -RK coupling scheme:

Stage 1 (Explicit):

1. Assign traction€oupling) term T ) and residualsY

2. Update time
For stage i = 2, s (Implicit)

1. Predict traction term

ap
6 | 22 &l
Qp QQ
2. AdvanceQs using LU-SGS:
F LYo | Yo 4 |

by 4 e d |
Update fluid residuaH

Update structure residud),
Updatetime.

No o &

hité

Compute force/ torque on structure and compute traction term,

Yq)
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n+cq n+cq
Q Qs

Figure 3: Schematic of the IMEX coupling scheme: (1) Prefligt-to-solid coupling term, (2)
implicit solve of structure equations and update solid residual, (3) computadlitdd coupling
term and update mesh, @plicit solve of fluid equations and update fluid residuals, update time.
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4 Results and Discussion

The solver was testad the context oseveral benchmark problems, each serving
a part in contributing to a thorough validation of the implemented nurherethods. The
choice of problems was such that analytic solutions are available for each of them, making
it easy to verify the obtained results. In the following subsections, we simulate- a free
stream preservation case to test the correct implementatioe GCL, a transient problem
to demonstrate the spatial and temporal accuracy of the flow solvdimatigt, a coupled

FSI problem to test the fidelity of the IMEX coupling.

4.1 Supersonic VorteRreservation

The first set of simulationwas performed taest thepreservation ofin inviscid,
isentropic, supersonic vortex in a curved channel. The flow is defined between two circular
arcs such that the Mach number of the fleariesinverselyas theradius and no shocks

are generatedThe density stratifigtion is given by the law:

Po o L~ 47)

al

In the above equatioM);, pi andy}; are the Mach numbgpressure and densi#y the inner
radius ri, of the channelrespectively, and are set2®5 1.0and1/a. The inner and outer
radii of the channel are 1.0 and 1.384, respectivelyvahables atnner curve was fixed
with these values while the outer channel and the bottom inlet boundary was set to

analytical solutions. The zegradient extrapolan boundary condition is used at the
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upper outlet boundarysuch a benchmark was previously testedliad,17,18] and the

steadystate saltion for densitystratificationis shown inFigure4 (a).

AAaAaAaAaaaaaNi
= NWERD N WO -

Figure 4. (a) The 4x16 grid used for supersonic, isentrofuitex case and (b) contours of steady
state analytical denisty.

The flow characteristics were tested, first, on a fixed grid and then on a grid in
which the interior nodes were deformed. The grid deforming straegybesanalytic
motion to the interior nodes, which is defined by the following equations:

N VPPV S«
Qi1—o Y OETte —OEJV

(48)

s L oed AT &0
0 ———OETE
Y Y
In the above equationd; andugr represent the radial displacement and velocity of the grid,

at angular positiod and timet. RyandTo are the amplitude and period of grid deformation

while nrepresents the wave number of the fluctuatiorl as a functionofi, The s ol ver 6s
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accuracy was tested usii®y as 0.6 andTo as 50.0.lt was observed thathe flow

chalcteristics were not distortedth grid deformatior(Figure5 (b), (c).

Figure 5: lllustration of grid deforming strategy for the supersonic, isentropic vortex preservation
test caseover contours of densitCase(a) shows the initial grid configuration, while (b) and (c)
depict exaggerated grid deformatioasinstants of the two maximum deformations.

Three gridswith quadrilateral elements (sample grid showrrigure4 (a)) were
tested using athird-order ESDIRK for third- and fourthorder SD TheL: andL: error

norms of fluid densityrelative to analytic values are computed as shown in equd8dn (

(49)

In the above equationblce is the number of cells in the domain arahdj loop over the
N solution points, each alorgandd. The error normgor spatial acuracy testsusing

stationaryanddeforminggrids are summarized ihable1l andTable2.
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Number Order of Order of

L1 Norm Lo Norm
of cells accuracy accuracy
Spatial acuracy of thirdorder Spectral Difference on stationary grids
16 1.473146726992-003 o} 1.839382528902-003 o}

64 1.9789598016(B-004 2.89609 2.67028111133-004 2.78416

256 2.533371317083-005 2.96561 3.5336278580a3-005 2.91777
Spatial accuracy of thdrorder Spectral Difference on deforming grids

16 1.517664602923103 0 1.86988031836003 0

64 2.051708327068B04 2.88696 2.748845343365B04 2.76605

256 2.738565278697H05 2.90533 3.7334217651828B05 2.88026

Tablel1: Resuls ofspatialaccuracy tests usinthird-order spectraldifference $D3 methodfor
supersonic vortex test cgsesing stationary and deforming grids

Number Order of Order of
L1 Norm L> Norm
of cells accuracy accuracy
Spatial accuracy of fourtbrder Spetral Difference on stationary grids
16 6.386371029042-005 o} 7.5018344696H-005 o}

64 4.033657906042-006 3.98484 4.98369374563FH-006 3.91195
256 2.638516958698-007 3.93429 3.307180795548-007 3.91354
Spatial accuracy of fourthrder Spectral Differeze on deforming grids

16 6.358625356358B05 0 7.596497779099B05 0
64 3.9884460002818B06 3.99481 5.231788587190B06 3.85996
256 2.5649795677978B07 3.95881 3.5937196002908B07 3.86375

Table2: Results okpatialaccuracy tets usingfourth-order spectraldifference $§D4 methodfor
supersonic vortex test cgsesing stationary and deforming grids

Order of accuracy of a scheme is a measure of the rate at which an approximation of a
differential equation, provided by a numalischeme converges to the exact solution, up

to machine precision. For example, a seeoraker scheme tested over two grids which

differ in resolution by a factor &, would result in errors which are apart by a fadtor

The above results are also iliieged inFigure 6. We see that nearly thirchnd fourth

orders of accuracy were achieved using the respective SD methods and that the accuracy
was not contaminated by the implementation of fagier implicit timesteppingor mesh

deformation
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Figure 6. Results for grid independence studies for inviscid, isentropic supersonic vortex
preservation benchmark problem using (a) thardier and (b) fourtforder spectral difference
method.

Further, the solver was tested for @bility to preserve steady flowhe following
results summarize simulations of supersonic, isentropic vortex preservation on deforming
grids. To avoid contamination of accuracy due to spatial discretization, an-ergath
spectral difference method was employed on the grid illustratedime5. A sufficiently
smallgt = 4.0e4 was used andhée simulation was allowed to run long enough that changes
in residuals were no longer significafince there are no transient effeesd a steady
flow is attained, the error norms would not demonstrate the désngporalordes of
accuracy.The absence of transient errors and elimination of spatial errors should result in

small error norms, with nappreciablescaling as shown imable3 andTable4.

29



Time- Order of Order of

L1 Norm L> Norm

step &) accuracy accuracy
Temporal accuracy of BDF2 on stationary grids

8.0E4  8.956200581514B12 o} 1.701650039219B11 o}

40E4 8.9139396276631B12 0.00682 1.694894219692B11 0.00574
20E4 9.309527920688B12 -0.06264 1.6957830446(2-011 -0.00076
1.0E-4 9.363611557129B12 -0.00836 1.696528942577811 -0.00063
Temporal accuracy of BDF2 afeforminggrids

8.0E4 9.0526031766228812 0 1.703457002157811 0

4.0E4 8.921354621846812 0.02107 1.695006393168B11 0.00717
2.0E4 8.90313230040712 0.00295 1.693109619678B11 0.00161
1.0E4 8.899893842728B12 0.00052 1.692565940459811 0.00046

Table 3: Results oftemporal accuracy tests usingecondorder backwarddifference BDF2)
schemdor supersonic vortex test case stationary anddeforming grid.

Time- Order of Order of
L1 Norm L> Norm
step é4) accuracy accuracy
Temporal accuracy of ESDIRK4 on stationary grids
8.0E4  8.899614850404B12 0 1.692824767332811 0

4.0E4 8.899283464010812 0.00005 1.692773872775811 0.00004
2.0E4 9.367858702299P12 -0.07403 1.696468077984B11 -0.00314
1.0E4 9.371889928607H012 -0.00062 1.6965160804578H11 -0.00004
Temporal accuracy of ESDIRK4 on deforming grids

8.0E4  8.899614606459B12 0 1.69284222158E011 o}

4.0E4 8.899254326077H12 0.00006 1.692771513034811 0.00004
2.0E4 9.661679063136812 -0.11859 1.715427705652B11 -0.01918
1.0E4 9.367808856105B12 0.04456 1.695939246834B11 0.01648

Table 4: Results otemporalaccuracy tests usinthird-order ESDIRK4scheméfor supersonic
vortex test case on stationary and deforming grids.
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Figure 7: Summary obimulation results for supersonic, isentioportex preservation casen
stationaryanddeforming gridsusing(left) secondorder backward difference (BDF2nd (right)
third-order ESDIRK4

4.2 Euler Vortex Propagation

Next, the propagation of a twdimensionaljsentropic Euler vortex isonsidered
The vortex is advected along thxediredion. All domain boundaries use a periodic
boundary condition with the dimensions of the domain representing the period along the
respective direction. Since the flow is inviscid, the vortex should ideally not dissipate.
Thus, any deviation from the initiavortex characteristics (amplitude/ width) can be

considered as numerical error. The initial conditions are given by the following equations:

(50)
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In the above expssions, the velocity, density and pressurg (andp) are functions of
the radiusy, measured from the eye of the vortex. The velocity perturbation is denoted by

U @ax andbis a constaniThepressure initial conditioalong with one of the test gridse

shown inFigure8.

Figure 8: (a) Pressure initial condition for the Euler vortex on thex40 grid and (b) the
propagated vorteyat a later instantpn a deformed grid

Simulationswere performed on several static and deforming meshes. The mesh is

deformed using the following laws:

. S ) I ¢ B Gl ¢
W w OE-ILE OE-ILE OE-IV

(51)
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