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Abstract

Fusion of Reflectance andX-ray Fluorescencd maging SpectroscopyData for the
Improved Identification of Ar t i Mdadtesiais

Works of art often are complex objects, and to fully understand how they were
constructed requires a variety of tools. The tools are used to provide information about
the objet, including its age, origin, construction methods, and materials. Art conservators
and historians use this information to better preserve and restore the object and to learn
about the artistdéds working met hodslturaind mot i
heritage field routinely use multiple poibaised tools to draw conclusiorsgcausea
single tool may be insufficieng full analysis of an object will requiran automated
approach for merging the results from multiple imagsed tools.

In this dissertation, algorithms for automatically registering, classifying, and fusing
data from multiple sourcemredescribed and demonstratiedidentify the pigments used
in the creation ofworks of art The registration algorithnprovides a means for
registering and producing mosafesm three types of datasets that are commonly used in
conservation science: 1) sets of overlapping-iswdmes, registered to a common
reference image, from which a mosaic is generataddpographs|R reflectograms), 2)
sets of images captured with different bandpass filters registered with one another
(multispectral image sets), and 3) hyperspectral image cubes (reflectance imaging
spectroscopy (RIS) andray fluorescence (XRF) imaging spectroscopgluding data
collected with an imaging system utilizing a seaimror), registered to a common
reference image. ™ XRF scanner was constructed at the National Gallery of Art
(Washington,D.C)) to obtain XRF imaging spectroscopy data, andira-sf-Gausgans

fitting algorithm was produced for generatietementmaps from theXRF imaging

Vi



spectroscopy data, as well aspmandicating the confidences in thadementmaps. A
featurebased algorithm was produced for generating pigment maps from the RI&sdata,
well as maps indicating the fidences in those pigment maps, anfilision algorithm
was produced for merging information from teEementand pigment mapsFinally,
validation steps were performed to assess the accuracy of the registration, diassifica
and fusion algorithms, and the fusion was judged to pramgeovements in the pigment

maps and their associated confidences.

vii



Table of Contents
Dedication
Acknowledgements
Abstract
Table of Contents
List of Figures
List of Tables
Chapter 1 - Introduction
1.1 Research Objectives
1.2 Research Summary
1.30Original and Significant Contributions
Chapter 2 - Imaging modalities
2.1 X-ray fluorescence (XRF) spectroscopy
2.2 Reflectance spectroscopy
2.2.1Fiberoptic reflectance spectroscopy (FORS)
2.2.2 Reflectance imaging spectroscopy (RIS)
Chapter 3 - Registration
3.1 Background
3.2 Methods
3.2.1 Identify an initial set of contrgoint pairs
3.2.2 Filter the initial set afontrolpoint pairs
3.2.3 Generate the registered and mosaicked image

3.3 Results

viii

Vi

viii

Xii

XiX

10

15

15

18

20

21

24

26

31

32

37

40

43



3.3.1 Fitting a thirebrder polynomial function
3.3.2 Validation
3.4 Applications
3.4.1 Xradiographs/IR reflectograms
3.4.2 Multispectral image sets
3.4.3 Hyperspectral imaging spectroscopy
3.4.3.1 Reflectance imaging spectroscopy (RIS)
3.4.3.2 Xray fluorescence (XRF) imaging spectroscopy
3.5 Conclusions
Chapter 4 - Classification of x -ray fluorescence imaging spectroscopy data
4.1Physical setup
4.2 Data collection
4.3 Data processing and viewing
4.4 Element classification and mapping
4.4.1 Calibration
4.4.2 Potential XRF peak identification
4.4.3 Element distribution map creation
4.4.3.1 Expected overlappimgergies
4.4.3.2 Gaussian fit
4.4.4 Residual calculation
4.5 Confidence computation
4.6 Element maps

4.7 Results and discussion

43

46

51

52

54

56

57

58

59

63

66

67

68

69

71

71

72

72

75

76

77

80



4.7.1 Rembrandt smalt identification
4.7.2XRF classification of a test painting
4.7.3 XRF classificationf an EarlyRenaissanceanuscript page
4.8 Conclusions
Chapter 5 - Classification of reflectance imaging spectroscopy data
5.1 Background
5.2 Pigment classification and mapping
5.2.1 Data collection and preparation
5.2.2 Spectral references
5.2.2.1 Reflectance peak features
5.2.2.2 Absorption features
5.2.2.3 Transitioredge features
5.2.2.4 Strongabsorptionregion features
5.2.2.5 Graduaslope feature
5.2.2.6 Correlation features
5.2.3 Compute classification scores
5.2.3.1 Normalize data
5.2.3.2 Missing data
5.2.3.3 Merge features
5.2.4 Compute crogsigment scores
5.2.5 Confidence computation
5.3 Results and discussion

5.3.1 Pigment identification

80

84

88

94

95

96

99

99

100

101

102

104

105

106

108

110

111

112

114

115

119

124

125



5.3.2 Pigment binder identification

5.4 Conclusions

Chapter 6 - Fusion of reflectance and XRF imaging spectroscopy data

6.1 Background
6.2 RIS + XRF fusion methodology
6.3 Results
6.3.1 Classification results
6.3.2 Validation
6.3.3 Improvement from fusion
6.4 Conclusions
Chapter 7 - Summary of contributions and future work
7.1 SmartXRF scanner
7.2 Study of the variation in reflectance spectral features
7.3 Spatial correlation
7.4 Thresholcwtomation
References & Bibliography
Appendix | - XRF element table
Appendix Il - RIS pigment feature table
Appendix Il - Pigment Element Table
Appendix IV - RIS pigment spectral library
Appendix V - Pacino RIS Results

Appendix VI - Pacino Fusion Results

Xi

127

130

131

132

133

138

138

139

142

144

146

147

149

150

151

152

163

166

169

171

203

214



List of Figures

Figure 1 : (A) Visible col cHarlequimBysieian@924),Pabl o Pi c a
(B) White end members spatial distribution map obtained from analysis of the
reflectance hyperspectral image cube (The green areas on the map are assigned
to lead white and the red to zinc white containing gypsum as a bulking agent).
Givenin loving memory of herhusbandTaft Schreiberby Rita Schreiber
1989.31.2, National Gallery of Art, Washington D.C. [3]. 1

Figure 12: RIS cube (1000 2500 nm, 525 bandgghrist in Majesty with Twelve
ApostlegWorkshop of Pacino di Bonaguida) (1320). Rosenwald Collection,
1952.8.277, National Gallery of Art (NGA), Washington, D.C. 3

Figure 13: Individual RIS image cubg9601 1680 nm, 215 bandé¢left), registered
and mosaicked RIS image cube (righ®,Gourmet Pablo Picasso (1901),

Chester Dale Collection, 1963.10.58tional Gallery of Art, Washington, D.C. 4

Figure t4: XRF image cube (030 KeV, 2192 bands¥hrist in Majesty with Twelve
ApostlegWorkshop of Pacino di Bonaguida) (1320). Rosenwald Collection,

1952.8.277, National Gallery of Art (NGA), Washington, D.C. 5
Figure 15: (A) Unit cell of azurite (copper carbonate hydroxide), (B) reflectance
spectrum of azurite, (C) XRF spectrum of ateu 7

Figure 21: XRF spectrum of a paint sample (spectrum courtesy of Brian Baade)16
Figure 22: XRF image cube (030 KeV, 2192 bands§ hrist in Majesty with
Twelve Apostle@Norkshop of Pacino di Bonaguida) (1320). Rosenwald
Collection,1952.8.277, National Gallery of Art (NGA), Washington, D.C. 18
Figure 23: FORS spectra of two blue pigments: azurite (blue line) and cobalt blue
(red line). 19
Figure 24: Top view of a linescanning imaging spectrometer (Courtesy of Dr. John
Delaney) SM (scanmirror), IL (imaging lens), SP (imaging spectrometer),

FPA (focal plane array). 21
Figure 25: Image of the vertical line on painting after dispersion by the spectrometer
(Courtesy of John Delaney). 22

Figure 26: RIS cube (1000 2500 nm, 52%ands) Christ in Majesty with Twelve
ApostleqWorkshop of Pacino di Bonaguida) (1320). Rosenwald Collection,
1952.8.277, National Gallery of Art (NGA), Washington, D.C. 22

Figure 31: (A) Color image of Johannes Vermeer's Girl with the Red Hat
(1665/1666). Andrew W. Mellon Collection, 1937.1.53, National Gallery of
Art (NGA), Washington, D.C., (B) infrared reflectance image (2.@a00 nm),
(C) x-radiograph, and (D) summation of the registered and rotatadiagraph

and the intensiginverted and rotated infrared reflectance image [31]. 25
Figure 32: Steps for computing the modulus of the wavelet transform. 33
Figure 33: (A) Detail IR image and (B) modulus image with control point regions

(red) identified (scale n=3). 34

Xii



Figure 34 : Det ai |l fr om CBristrAmang tde Doctoid513)r | ey 6 s
(A) visible-red reflectogram, (B) infrared reflectogram, (C) phase image of
(B) visible-red, (D) phase image of infrared. Samuel H. Kress Collection,
(C) 1952.5.47.a, National Gallery of AMyashington, D.C. 35
Figure 35: Normalized crossorrelation of local regions of the phase images of the
red channel of the color image and a corresponding phase imag#of an
image (standard deviation = 0.03). 36
Figure 36: (A) Matchingcontrotpoint pairs between the color image (top) and
infrared image (bottom) and (B) horizontal disparity map. Blue points and lines
shows control points and pairs that have been removed, although they have good
correlation peaks. Red points and liseé®w control points that are used in the
transformation. The black points show the Hadtnction. The points are fit to
a bilinear function. 38
Figure 37: Iterative process to find the most robust pairs of matched cqdimt
regions between ¢éhtwo images. (A) First pass horizontal and (B) vertical
disparity maps. After multiple iterations, (C) the final horizontal and (D) vertical

disparity maps. Points are fit to thicilder polynomial functions. 40
Figure 38: Placement of 6 blocks indlresulting mosaic. 41
Figure 39: Distances from center (pixels) for the 6 placed blocks imibsaic. 42

Figure 310: (A) The vertices of a square grid target showing the-sgaor
distortion of a hyperspectral camera and (B) the correspondindoinauesi
vertices showing the removal of the distortion. The vertices are shown in red
and the square grid fit to the vertices is shown in blue. 44
Figure 311: The distortion plots for the graph paper data: before correction (left
column), after corrd@n (right column), horizontal distortion (top row), and vertical
distortion (bottom row). Note the scale change of the color bars for the before
and after plots. 45
Figure 312: Filter for emphasizing square grids. 48
Figure 313: (A) Extracted vertices of reference (blue circles) and sasgined
cube (red crosses) grids, (B) distances, in pixels, between the reference and
easelscanned cube vertices. (C) Extracted vertices of reference (blue circles)
and scasmirror cule (red crosses) grids, (D) distances, in pixels, between the
reference and scanirror cube vertices. 49
Figure 314: (A) Color reference image, (B) mosaic of eas@nned 910 nm band,
(C) extracted vertices of reference (blue circles) and mosaicr@sses) grids,
(D) distances, in pixels, between the reference and mosaic vertices. 50
Figure 315: (A) Extracted vertices of reference (blue circles) and-sgaor mosaic
(red crosses) grids, (B) distances, in pixels, between the reference and mosaic
vertices. 51

Xiii



Figure 31 6 : Det ai | f r omChBst Amorgithd Doctar@513Dr | ey 6 s
(A) color image, (B) registered infrared (120800 nm) image, and (C)
registered xadiograph. Samuel H. Kress Collection, 1952.5.47.a, National
Gallery of Art, Washington, D.C. 53
Figure 31 7 : Det ai | f r &ettPodtrait{ 1630 (A)Lcelor snage, rard s
(B) registered xadiograph. Gift of Mr. and Mrs. Robert Woods Bliss, 1949.6.1,
National Gallery of Art, Washington, D.C. [52]. 54
Figure 318 Spectra from a site in the reflectance image cube of a [4teehtury
illuminated leaf in the collection of the San Marco Museum, Florence [11]. 55
Figure 319: Hyperspectral data cub@s01 1680 nm, 215 bandsf Pablo
Pi c a kesGounse(1901) individual (left), egistered and mosaicked (right).
Chester Dale Collection, 1963.10.52, National Gallery of Art, Washington, B&.

Figure 320: Alignment of VNIR and NIR spectra. 58
Figure 41: XRF spectrum of a paint sample containing lead white (sample courtesy
of Brian Baade). 61

Figure 42 : (A) Color image of RemblhedApodte van Rijn
Paul (1657). Widener Collection, 1942.9.59, National Gallery of Art (NGA),
Washington, D.C., (B) XRF leaddpeak image (10.54 KeV). 62

Figure 43: XRF imaging spectroscopy scanner: (A) image, (B) diagram showing
arrangement, (C) diagram showing how the components are interconnected (A

and B are courtesy of Dr. Kate Dooley). 64
Figure 44: XRF imaging spectroscopy collection GUI. 65
Figure 45: XRF Posiprocessing and Data Viewing GUI. 68
Figure 46: (A) Histogram of XRF peak locations, (B) Line fit to the identified

calibration points. 70

Figure 47: A region from an XRF spectrum region (black dotted line) and the
corresponding fit to that region (red line). (A) Fit of the sum of the & K
Co Kygpeaks (red line), (B) fit of the Coifeak alone (red line), and (C) fit of

the Fe I, peak alondred line). 74

Figure48: ( A) Detail of <col oRoseg1830y €iftalf Vi ncent
Pamela Harriman in memory of W. Averell Harriman, 1991.67.1, National
Gallery of Art (NGA), Washington, D.C., (B) XRF chromiuny Kap. 75

Figure 49: Confidence map for the XRF chromiuny Kap shown in Figure-8. 77

Figure 410: Thresholded XRF chromiumgkap shown in Figure-8. 80

Figure 41 1 : (A) Color image of RembheAposted van Rij
Paul (1657). Widener Collection, 194259, National Gallery of Art (NGA),
Washington, D.C., (B) 6.41 KeV (irongKimage, (C) 10.54 KeV (leady.
image, and (D) 3.73 KeV (calciumgKimage. 82

Xiv



Figure 412: Element distribution maps found by integrating over the Gaussian
function fit toeach element peak: (A) arsenig, KB) nickel K, (C) cobalt K.
(D) Smalt map formed by merging #)C) . Rembr andt van
Workshop?)The Apostle Paull657). Widener Collection, 1942.9.59,

National Gallery of Art (NGA), Washington, D.C. 83
Figure 413: Color image of Conover painting. 84
Figure 414: Binary element identification maps: (A) iron, (B) cobalt. 85

Figure 415: Element distribution maps found by integrating over the Gaussian
function fit to each element peak: (A) irory,KB) iron Kp, (C) cobalt K,

(D) cobalt K. 86
Figure 416: Element distribution maps found by integrating over the Gaussian
function fit to each element peak: (A) coppes KB) chlorine K 87
Figure 417: Element distribution maps found by integrating over the Gaussian
function fit to each element peak: (A) cadmiumg KB) chromium K 87
Figure 418: Element distribution maps found by integrating over the Gaussian
function fit to each element pedal) calcium Ky, (B) titanium K 88

Figure 419: Christ in Majesty with Twelve Apostl@&/orkshop of Pacino di
Bonaguida) (1320). Rosenwald Collection, 1952.8.277, National Gallery
of Art (NGA), Washington, D.C. 88
Figure 420: (left) Gold L, distribution map, (right) gold confidence scores. 89
Figure 421: (left) Calcium Kdistribution map, (right) calcium confidence scores.90
Figure 422: (left) Copper I distribution map, (right) copper confidence scores. 90

Figure 423: (left) Iron Kydistribution map, (right) iron confidence scores. 91
Figure 424: (left) Mercury Ly distribution map, (right) mercury confidence scores.91
Figure 425: (left) Lead K distribution map, (right) lead confidence scores. 92
Figure 426: (left) Tin Lydistribution map, (right) tin confidence scores. 93
Figure 427: (left) Potassium Kdistribution map, (right) potassium confidence
scores. 93

Figure 51: Four blue pigments in an oil binder (Courtesy of Dr. John Delaney). 95
Figure 52: NIR spectra of ultramarine paint: 5 percent volume concentration

(red line), 50 percent volume concentration (blue line). 96
Figure 53: NIR spectra of azurite paint (blue line) and a paint mixture containing
azurite (red line). 97

Figure 54: Malachite paint spectrum showing a reflectance peak locktaiore. 102
Figure 55: Azurite paint spectrum showing three absorption location features. 103
Figure 56: A single peak of the derivative of a spectrum of an iAsasedlye
showing transitbn edge peak location, bandwidth, and asymmetry features104
Figure 57: Cobalt blue paint spectrum showing two strong absorption regions and
their corresponding center location and width features. 106
Figure 58: Copper resinate paint spectrum shovargyadual slope region feature 107

XV

Rijnoés



Figure 59: Derivative spectra of ultramarine in a binder on a ground. Note that only

a few of the regions are used to identify the pigment. 109
Figure 510: Simple classification example. 110
Figure 511: Classificabn scoress(p), for a sample containing azurite. 115

Figure 51 2 : ENVI 6s Spectral Analyst tool showing
azurite library spectrum to the other spectra in the library using three different
techniques: spectral angle mapper (SAM), spectral feature fitting (SFF), binary

encoding (BE). 116
Figure 513: Crosspigment scores given the spectral library. 118
Figure 514: Crosspigmentscores given the azurite library spectrum,

c(p;b=azurite) 119

Figure 515: Azurite test on an expected mixture of azurite and lead ve(yite,

(blue),c(p;b=azurite)(green) x(p;b=azurite)(red). The confidencis

measured by computing the difference between the largest two scores. 121
Figure 516: Lead white test on an expected mixture of azurite and red w{p)e,

(blue),c(p;b=lead white)Xgreen) x(p;b=lead white)red). The confidence is

measured by computing the difference between the largest two scores. 122
Figure 517: (A) Azurite chssification scores(p), (B) confidence scored(p), and

(C) product of classification and confidence scosgs)d(p) for Christ in

Majesty with Twelve Apostl€é/orkshop of Pacino di Bonaguida) (1320).

Rosenwald Collection, 1952.8.277, National Gallery of Art (NGA),

Washington, D.C. 123
Figure 518: (A) lead white classification scoregp), (B) confidence scores,

d(p), and (C) product of classification and confidence sca(p3d(p)

for Christ in Majesty with Twelve Apostl@&/orkshop of Pacino di Bonaguida)

(1320). Rosenwald Collection, 1952.8.277, National Gallery of Art (NGA),

Washington, D.C. 124
Figure 519: (A) Color image, (B) Product of classification and confidence

scores for an insettased dye using RIS features orlfp)d(p) (C)

plantbased dyeChrist in Majesty with Twelve Apostl@&/orkshop of Pacino

di Bonaguida) (1320). Rosenwald Collection, 1952.8.277, National Gallery of

Art (NGA), Washington, D.C. 125
Figure 520: (A) Product of classification and confidence scagsd(p) for Red

lead using RIS featuresly, (B) Lead white, (C) Gypsun€hrist in Majesty

with Twelve Apostle@Vorkshop of Pacino di Bonaguida) (1320). Rosenwald

Collection, 1952.8.277, National Gallery of Art (NGA), Washington, D.C. 126
Figure 521: (A) Product of classification and confidence scag®d(p) for

Azurite using RIS features only, (B) Ultramarine, (C) Indigbrist in Majesty

with Twelve Apostle@Vorkshop of Pacino di Bonaguida) (1320). Rosenwald

Collection, 1952.8.277, National Gallery of Art (NGA), Washington, D.C. 126

XVi



Figure 522: (A) Product of classification and confidence scag®d(p) for
Yellow ochre using RIS features only, (B) Copper resinate, (C) Lead tin
yellow. Christ in Majesty with Twelve Apostl@&/orkshop of Pacino di
Bonaguida) (1320). Rosenwald Collectj 1952.8.277, National Gallery of

Art (NGA), Washington, D.C. 127
Figure 523: Detail of Lavender Mis{Jackson Pollock) (1950Ailsa Mellon Bruce
Fund, 1976.37.INational Gallery of Art (NGA), Washington, D.C. 127

Figure 524: (A) Product of score and confidence for oil, using the algorithm
described above, (B) product of score and confidence for alkyd, using
the algorithm described above, (C) oil map produced for the same region
using ENVI , (D) alkyd map produced using EN¥NVI-based maps
were provided by Dr. Kate Dooley. Note that the images have been
converted to binary images, by applying a threshold. Detaibeénder
Mist (Jackson Pollock) (1950 ilsa Mellon Bruce Fund, 1976.37.1

National Gallery of Ari{NGA), Washington, D.C. 129
Figure 61: FORS spectra of malachite paint (blue line) and verdigris paint
(red line). 132

Figure 62: Yellow ochre RISonly test,s(p)(blue),c(p;b=yellow ochre)green),
x(p;b=yellow ochre)red). The confidence is measured by computing the
difference between the largest two scores. 135

Figure 63: Yellow ochre test after fusion with XRF featurse@) (blue),
c(p;b=yellow ochre)green)x(p;b=yellow ochre)red). The confidence is
measured by computing the difference between the largest two scores. 136

Figure 64: Product of classification and confidence scores for azurite (A) using RIS
features only and (B) using both RIS and XRF featuésist in Majesty with
Twelve Apostle@Norkshop of Pacino di Bonaguida) (1320). Rosenwald
Collection, 1952.8.277, National Gallery of Art (NGA), Washington, D.C. 137

Figure 65: (A) Color image, (B) Product of classification and confidence scores for
an insecibased dye using RIS and XRatures, (Cplantbased dyeChrist in
Majesty with Twelve Apostl€é/orkshop of Pacino di Bonaguida) (1320).
Rosenwald Collection, 1952.8.277, National Gallery of Art (NGA),
Washington, D.C. 138

Figure 66: (A) Spatial map from [4] showing the pignis assigned (see Tablel6
for pigment labels) using an ENVI convex geomddaged algorithm. This
analysis was done in [4] and was obtained from multispectral image data. (B)
Spatial map of azurite using fusion of RIS and XRF, (C) ultramarine, (D) red
lead, (E) inseebased dye, (F) plafitased dye, (G) yellow ochre, (H) copper
resinate, (I) lead whiteChrist in Majesty with Twelve Apostl@&/orkshop of
Pacino di Bonaguia) (1320). Rosenwald Collection, 1952.8.277, National
Gallery of Art (NGA), Washington, D.C. 141

XVii



Figure 67: (A) Color image, (B) absolute difference between confidence maps
before and after fusion for an insdxsed dye, (C) platitased dyeChristin
Majesty with Twelve Apostl€é/orkshop of Pacino di Bonaguida) (1320).
Rosenwald Collection, 1952.8.277, National Gallery of Art (NGA),

Washington, D.C. 143
Figure 68: (A) Absolute difference between confidence maps before and after
fusion forred lead, (B) lead white, (C) gypsum. 143
Figure 69: (A) Absolute difference between confidence maps before and after
fusion for azurite, (B) ultramarine, (C) indigo. 143
Figure 610: (A) Absolute difference between confidence maps before and after
fusion for yellow ochre, (B) copper resinate, (C) lead tin yellow. 144

xviii



List of Tables

Table 31: Error for different fits of scamirror distortion. 46
Table 61: Summary of pigment assignment obtained from(§ég Figure ®A
for the corresponding spatial map). 139

XiX



Chapter 1 - Introduction

Traditionally, to identify a material used in the construction of a work psameone
must take asmall physical sampldrom it andthen performsome form of chemicabr
microscopic analysifl, 2]. This approach has several limitations, such as: 1) not every
region can be sampled, becaussmoving samples from pristine areas strongly
discouragedand 2) the results cdre applied only to the sampled regi¢h, 2]. The
result of these limitations is lasigh probability of error inthe material mapdegreeof
certainty that the identified material is corregtpducel using thedata. This means that
samples from two regions that are the same aoded not be the same pigmelnt an
example taken froni3] (seeFigure 1-1), they have shown a spatial distribution map of

the white pixels in animage &fa b | o PHarequs $osizian(1924)

Figure 1-1: (A) Vi si bl e col or i madgrlequio Musi€lamn 1924), Pi cas s o
(B) White end members spatial distribution map obtained from analysis of the
reflectancehyperspectral image cube (The green areas on the map are assigned to
lead white and the red to zinc white containing gypsum as a bulking agen@ivenin
loving memory of her husband, Taft Schreiber, by Rita Schreiber, 1989.31.2,
National Gallery of Art, Washington D.C. [3].


http://www.nga.gov/content/ngaweb/collection-search-result.html?donorList=1813&donorObj=71072
http://www.nga.gov/content/ngaweb/collection-search-result.html?donorList=1813&donorObj=71072

In the white regions of the painting, two different white pigments, zinc white (shown in
red) and lead white (shown in green), were discovered. It is likely that the use of physical
samples alone would have resulted in the misclassificatioomohe of t he paint
white regiongf taken from only one area

Pointbased spectroscopicmethods, such a$iber-optic reflectance spectroscopy
(FORS and x-ray fluorescence XRF) spectroscopybecause they are namvasive
remove the limitationof sampling ofregions. These methods alldier points to be
sampled in regions where a physical sample (a scrapingcavsasection) cannot be
taken; however, they do not provide stratigraphy information that is obtained from a
crosssection.Nor-invasive methods make itessnecessary to infer the material label
from a point that can be physically samplé&tie probabilities of error in the resulting
material maps areherefore reduced for the points within regions where physical
samples could not havedretaken. Poirbased methods have the additional limitation of
being slow to collect. To collect an equadigaced grid of points in a reasonable amount
of time, thespatial sampling rate must be kept Idwor exampleit will take 29.1 hours
to acquire a024x1024 pixetegionwith a 100 ms acquisition time per sampléhe low
sampling rate also contributeshigher probabilities of error in the material map, because
either (1) the spot size must be made large, thus incretsrsize of the pixel, whic
increaseghe likelihood ofobservinga mixtureof materiak (member of more than one
class), or (2) regions between the samples must be assumed to be of the same class as the
closest sample.

Imagebased spectroscimpmethods allow for the constructiaf image cubes, where

a spectrum at each spatial pixel of an image makes up the@uhkgobserved along the



spectral dimension, the cubes consist of stacks of imagesexample is eflectance
imagingspectroscopyRIS) [3, 4, 5, 6, 7, 8]RISis anoninvasivemethodthat produces
cubes ofreflectancespecta. Each slice through the cube is the measured reflectance at
each spatial pixel of an image farsingle wavelength of light.Figure 1-2 shavs an
extendednearinfrared €x-NIR) reflectance cube collected fro@hrist in Majesty with
Twelve Apostleby the workshop of Pacino di Bonaguiddhe face of the cube issangle
image from the cube. The depf{tvavelength)dimension represents a stack %525

images, each representing a differegitralwavelength

"/ wavelength
(nm)

Figure 1-2: RIS cube L0007 2500nm, 525bands), Christ in Majesty with Twelve
ApostlesWorkshop of Pacino di Bonaguida) (1320). Rosenwald Collection,
1952.8.277, National Gallery of Art (NGA), Washington, D.C.

RIS producesa regularlyspaced grid of spectra athigh spatiasampling raten a few
minutes RIS camerasystemsproduce materiamaps with lower probabilities of error
than those produced by physical sampling or by go@ised methoddhis is because the

spacing between samples (spatial samplingrvate can be smaller than what can be
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captured by a poidtased method in a reasonable amount of time. Improvements in the
probability of error arenonetheleséimited by the size of the sensor arrayd multiple
cubes may havi® be capturetb addresshis limitation.

To furtherreduce the probability of error the materials map produced agy image
based spectroscopic methodgistration tooldiave been developdtat allow the cubes
to be mosaicked to allow complete spatial coverage of a work of art at a high spatial

sampling rate[9, 10, 11] An example of one cube constructed by registering and

mosaicking eight smaller cubessisown in the~igurel-3.

Figure 1-3: Individual RIS imagecubes(9607 1680 nm, 215 bandsileft), registered
and mosaickedRIS image cube (right),Le Gourmet Pablo Picasso (1901), Chester
Dale Collection, 1963.10.52National Gallery of Art, Washington, D.C.



A second example of an imapased spectroscopic method is XRF imaging
spectroscopyl2, 13] XRF imaging spectroscopy is alsmartinvasivemethod but,
rather than reflectance spectra, it produces cubesaf #uorescencspecta. Each slice
through the cube is the measurethy fluorescence at el spatial pixel of an image for
a single fluorescence eneyg Figure 1-4 shovs anXRF cube collected fronChrist in
Majesty with Twelve Apostldy the workshop of Pacino di Bonaguid&he face of the
cube is a single image from the cube. The dégmtlergy dimenson represents a stack of
2192 images, each representing a differemergy In contrast to RIS, because XRF
imaging spectroscopy cubes are collected one spectrartimag, the collection time is
significantly longer(a 1006by-1000 pixel grid, with a 10@ns integration time, would

require approximately 28 hours to acquire)

energy (KeV)

Figure 1-4: XRF image cube Q1 30 KeV, 2192bands),Christ in Majesty with Twelve
ApostlegWorkshop of Pacino di Bonaguida) (1320)Rosenwald Collection,
1952.8.277, National Gallery of Art (NGA), Washington, D.C.



The registration tools also allow faubes covering different spectral ranges, to be
concatenated, and thus increasing the information available for spectroscopic analysis
This increasedpectral coverage of the work of art at a high spectral samplinganatiee
attained ly registering the cubes to a common reference imag® a set of registed
reference images, and then concatenating the cubes in the spectraliahméhis is
important, because different spectral regions contain different information that can be
used to identify materials more accurately. The registration step allows the information to
be fused and then used in a single classification[$ted5]

When generating material maps of tdimensional works of arsuch as paintings
and works on paper and parchmehision of two modalities is useful when each
modality provides unique information that can noye the accuracy of the maps. For
example, RIS provides information related to molecular composition, while XRF imaging
spectroscopy provides element information. Together they give a more complete
description of the material, as showrFigure1-5. Figure1-5A is the unit cell of azurite.
Figure 1-5B shows the reflectance spectrum of azurite. The absorption features
(vibrational features) related to thearbonate €O;) and hydroxide (OH) functional
groups are labeledrigure1-5C shows the XRF spectrum of azurite. The element features
related to the coppergand K, peaks are labeled. Together the information from RIS and
XRF imaging spectroscopy bettdescribe azurite, d€us(COs)2(OH),, than either do

alone
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Figure 1-5: (A) Unit cell of azurite (copper carbonate hydroxide), (B) reflectance
spectrum of azurite, (C) XRF spectrum of azurite

1.1Research Objectives

Advances in conservation science, from physical samples tinmasivepointbased
samplesto imagebased methods, have improved the accuracy with whicht i st s 6
materials can be identified in works of art. The goal of this reseaashtovimprove
material identification by: 1) generating material maps of works of art using multiple
spectroscopy modalities, 2) generating confidence maps indicating the relative
confidence in those materials maps, and 3) producing a fusion schemalitted the

multiple spectroscopy modalities to generate material maps with improved accuracy.

1.2Research Summary

The research described here includes algorithms for identifying pigments used in the
creation oftwo-dimensional works of arfThe algorithmsnclude those for automatically
registering, classifying, and fusing data from multiple imaging spectroscopy modalities.

The registration algorithrprovides a means for spatially aligning and producing mosaics

v



for different types of datasets that are coomiy used in conservation science. The
classification algorithms include one for generatelgmentmaps fromXRF imaging
spectroscopy data and another generating pigment maps from RIS data. The fusion
algorithm merges features from tleéementand pignent maps to produce improved
pigment maps.

The registration algorithm is capable of automatica#dgistering and producing
mosaicsfrom three different types of datasets: 1) sets of overlappingnsages,
registered to a common reference image, from which a mosaic is generated (x
radiographs, IR reflectograms), 2) sets of images captured with different bandpass filters
registered wit one another (multispectral image sets), and 3) hyperspectral image cubes
(RIS and XRF imaging spectroscopy, including data collected with an imaging system
utilizing a scarmirror), all registered to a common reference imaee registration of
RIS cubs, covering different spectral ranges, to a common reference image produces a
single RIS cube that covers a larger spectral rakgg.to the algorithm's success is a
novel method for filtering candidate contqmdint pairs. This method makes it possilde t
register images, such asray images, that contain significant content (for example,
canvas weave) that does not appear in the reference image. Results are shown for each of
the types of datasets, and a validation study was performed to quantify tinacsicof
the algorithm. This algorithm has been used to register more than 200 paintings at the
National Gallery of Art (Washingto).C.) and the Art Institute of Chicago.

The XRF classification algorithm producedement maps from XRF imaging
spectroscop data, captured usireg customXRF imaging spectroscopscannedesigned

and constructed at the National Gallery of Art (Washingt@hC.). The algorithm



estimates the peaks in the XRF dataset by finding the optimal set of Gaussian functions

that sum toif each spectrum. Thelementmapsthen are generated by integrating over

the peaks associated with a set of el ements
to the element maps, associated confidence maps are produced for visualizing the
confiderce in theelementmaps.Multiple pigment, however, are composed of the same
elements, therefore pigments maps are not generated from the XRF information alone.

The RIS classification algorithm utilizes faaturebasedapproachfor generating
pigment mapsifrom the RIS dataThe RIS data have been captured using multiple
hyperspectral imaging systems, covering different spectral rgd§és 950nm, 962
1650 nm) including an extended nemfrared €x-NIR) system(10007 2500 nm)that
was developed at ¢h National Gallery of Art (Washington, D.C.). The algorithm
identifies reflectance and absorption features from the RIS datasets, measures the
proximity of those features to the features from a library of reference spectra for a set of
pigments, and thenombines the proximity measures for each library spectrum into a
scalar value indicating how similar the data are to each pigment. The result is a set of
maps for each pigment in the libra#ssociated confidence maps also are produced for
visualizing theconfidence in the pigment maps.

The fusion algorithmmergeselementand pigmentfeatures to produce improved
pigment maps. The algorithm starts with the pigment maps produced using tbhalRIS
features and then incorporates the XRF element features. d®edhe elements
constituting each pigment are known, the element maps can be used to distinguish
between two or more pigments that have similar RIS features, but diffelement

compositios. Improvement in the fused pigment maps occurs in two ways. First, false



positives are reduced by removing matches in the pigment maps where the required
elements for that pigment are not identified. Second, false negatives are reduced by
removing ambiguas pigment matches that had reduced the confidence in a pigment map.
Like the classification algorithms for the individual modalities, the fusion algorithm
produces confidence maps that are associated with each pigment map. Confidence is a
measure of howikely a given pigment assignment is to be correct, given the other
possible pigments. Confidence will be low if there are multiple pigments that have
similar RIS features. Confidence will be improved, relative to thedRI$ maps, when

conflicting pigmens are removed, based on thelgment compositian

1.30Original and Significant Contributions

A significant result of thisresearchwas the creation o& robust registration and
mosaicking algorithm that is capable of producing accurate results desyite:cbhntent
differences inherent in different imaging modalities, 2) differences due to changes made
by the artist that are visible in only one modality, and 3) various differences in distortion
between the imaging modalities, such as soamnor distorton and optical distortion of
the lenses. The algorithm is capable of registering color and IR imagadiographs,
andhyperspectral image cubesuch as RISnd XRF imaging spectroscopiatasetsA
graphical user interface (GUI) has been created andipheulversions have been
compiled to run on different operating systems to allow users of various technical skill
levels and in different environments (for example, conservation and science labs) to
utilize the algorithm to register imageBhe registratia algorithm now is being used in
conservation departments at several art gallemmesmuseumaround the world and has

become a valuable tool used by conservation scientists in the analysis and treatment of
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works of art. To date, over 200 works of art édeen registered and mosaicked using
the algorithm, including those in three major online catalogs at two instityiénd 7,
18].

An additional component of this research wlascontribution to theconstruction of
an XRF imaging spectroscopgcanner at the National Gallery of Art (Washingtor(.).

A microcontrollerwas programmedo receive a set of analog trigger signals from a
mechanical easel and then send a corresponding software trigger to a computer via a USB
cable.Software toolswere createdor configuring data collections, collecting the data,
viewing the progress of th&can, performing pogirocessing on the collected data, and
manually parsing through the cube to view both spectra and the maps at various energies.
When a software trigger is received from the microcontroller, the tool sends a command
to an XRF detectorotcollect a spectrum. When the easel reaches the end of a row, the
spectra for that row are saved to the hard drive, and the sum spectra for that row and an
XRF map for a given energy are displayed. After the scan is complete, the trigger
position informaibn is used to align the rows of the scan, and the data are transformed
from a binary file to a hyperspectral data cube format. The user then can load the cube
and look at an image for a given energy, or can click on the image to view the spectra at
that pint.

This research also contributed to the constructioraroextendeeNIR (ex-NIR)
hyperspectral camera systewas also constructedt the National Gallery of Art
(Washington,D.C)). Included in this research was the writing \@drious scripts for
focusng the camera and pegtocessing, calibrating, and viewing the hyperspectral

datasets.
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A significant result of the present research was the creation sfardalone
classification algorithm fogeneratingelementmaps from XRF imaging spectroscopy
datagts. The algorithm requires little user intervention and does not require the user to
have a background imaterial science. It cabe operatecasily by any member of a
museum conservation department. The algorithm produces an element map for each
elementspecified by the user, as well as an associated confidence map for each element.

The final significant contributions of the present reseavehe new algorithms for
generatingpigment maps from RIS datasets dhen fusinghose pigment mapsith the
results from the XRIelement maps to produce improved pigment mAgsabove, these
algorithms also require little user intervention to run them; however they do require that a
spectral library be created, as well a spreadsheet of RIS and XRF featuessctior
pigment in the library to be completed. Once this information has been provided, the
algorithms can be operated easily by any member of a museum conservation department.
These algorithms produce pigment maps for each pigment in the spectral lisrasgl] a
as an associated confidence map for each element.

This research has led to the following publications and presentations:

1 John K. Delaney, Kathryn A. Doolefpamon M. Conover, Suzanne Lomaxand
Murray H. L o e w, AVisi bl e and Icoply rofaPamtchg® | magi ng
Technart: Nordestructive and microanalytical technéguin art and cultural heritage
Catania, Italy(presented by John Kelaney 4/2015.

1 Damon M. Conover, John K. Delaney,and Murray H. Loew i Aut omat i c
registration and mosaickingf technicali mages of Ol d Master pair
Physics A 119:1567%1575. DOI 10.1007/s003391591401 (2015)

1 John K. DelaneyKathryn A. DooleyDamon M. Conover, Lisha Deming Glinsman,
Suzanne Lomax, and Murray H. LogwApplication ofVisible and hfraredimaging

Spectroscopyto Analyze Paintings6 A AAS 2015 Annual Meetin
Information, and Imaging, San Jose, CA (presented by John K. Delaney, 2/2015).
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John K.Delaney Kathryn A.Dooley,Damon M. Conover, Lisha DemingGlinsman,

and Murray H.L 0 e w, ACompari son of Reflectance | me
Macro XRF, 06 Working Gr-myuRuorddeesece imaging ann Macr
Works of Art, Antwerp, Belgiumgresented by John K. Delaney2@15).

Damon M. Conover, John K. DelaneyKathryn A. Dooley, Paola Ricciardgnd
Murray H. Lo e w. Al mage c eptotessing in the field mfdcultyrad s t
heritage”. Winterthur/University of Delaware Art Conservation Mastensel
Program(invited lecture, 4/2014).

John K.Delaney,Damon M. Conover,Kathryn A Dooley, Lisha Demingslinsman,
Suzanne Q. Lomax, Michael Swicklik, and Murray Hoew . "A novel macre
scanner for collection of hyperspectrakray fluorescence (XRF) and visible-near
infrared reflectance image cubes of paintingSymposium on the Nemvasive
Analysis of Painted Surfaces: Scientific Impact and Conservation Practice
(Smithsonian American Art Museurfpresented by John KRelaney, 2/2014).

Kathryn A. Dooley, Damon M. Conover, Lisha DemingGlinsman, andJohn K.

Del aney, ACompl ementary Standof f Chemical
Materials in an Early |t &lgewa@GhenRéhBd ssance
53:1377513779. doi:10.1002/anie.201407893014)

The registration tool was used to registke images fobutch Paintings of the
Seventeenth Centyryed. Arthur K. Wheelock Jr. NGA Online Editions,
http://purl.org/nga/collection/catalogue/1#ftbnturydutchpaintings[16].

The registration tool was used to register the imagesMonet Paintings and
Drawings at the Art Institute of Chicaged. Gloria Groom (Chicago: Art Institute of
Chicago, 2011). http://publications.artic.edu/reader/mopeiintingsanddrawings
artinstitute.chicago[17].

The registration tool was used to register the imagesREmoir Paintings and
Drawings at the Art Institute of Chicaged. Gloria Groom (Chicago: Art Institute of
Chicago, 2011). http://publications.artic.edu/reader/renpaintingsanddrawings
artinstitute.chicago[18].

Damon M. Conover, John K. Del aney, and Murray
accommodation of scamirror distortion in the registration of hyperspectral image
cubeso. Proceedings of SPI E, Al gori t hms

Hyperspectral, and Ultraspectral Imagery XIX8v43 (May 2013).
Damon M. Conover, John K. Del aney, and Murray

Registration and Mosaicking of Qaptics er vati o
for Arts, Architectureand Archaeology IV, v. 8790 (May 2013).
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http://publications.artic.edu/reader/monet-paintings-and-drawings-art-institute-chicago
http://publications.artic.edu/reader/renoir-paintings-and-drawings-art-institute-chicago%20%5b137
http://publications.artic.edu/reader/renoir-paintings-and-drawings-art-institute-chicago%20%5b137

Damon M. Conover, John K. Delaney, Paola Ricciardi, and Murray H. Loew,
ATowards Automatic Registration of Technic
of SPIE, Computer Vision and Image Analysis of Art I, v. 7869 (January 2011):

78690C.
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Chapter 2 - Imaging modalities
Conservabn laboratories seek to answer questions regarding the interpretation and
understanding of works of art, including:
How old is it?
Where does it come from?

What is it made of (material information)?
How was it made (working methodd)}®].

=A =4 =4 =4

Regarding the question of what a painting is made of, it is important for the conservation
of paintings to know what colorants, binders, and preparatory layers wer§0$€etio
this end, conservators utilize data from seermaging modalities, such asray
fluorescence (XRF)maging spectroscopy andeflectance imaging spectroscofiIS).
Each modality has qualities that are beneficial to the analysis of works of art, as well as

gudities that limit its usefulness.

2.1 X-ray fluorescence (XRF) spectroscopy

XRF spectroscopinvolvesilluminating a sample withkx-ray photons. When a photon
strikes an atom, it dislodges an electron from one of its inner shells. The resulting
vacancy is filled with an electron from an outer shell. Since the inner shell has a higher
binding energy than the outer shell, the excess eng i s r el erays e as an
resulting vacancy in the outer shell is filled with an electron from a shell even father from
the nucleus, and t he arrye[ZlAdetectogthengsysedtec r el e a s
measure the number of photons emitted from the samptedficence) across a range of
energy levels, thus producing a spectrum, as shoviaigire 2-1. Theenergy of the x
rays Ky Kp, Ly, L, Mg, and M,, named according to the shell where the original vacancy
occurred, are characteristic of spec#iementstherefore the positions of the peaks in

the spectrum can be used to identify the elements prestrg sampl¢21].
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Figure 2-1: XRF spectrum of a pant sample (spectrumcourtesy of Brian Baade)

In conservation science, the analyses of XRF data are used by conservators
diagnosing and treating objects, and in the investigation of amigterials[22]. XRF
can providea survey of the elements that compose the paint at a given point in a painting.
Using the list of elements detectedn anal yst can of t[@3 THhenf er t h
analysis of paintings, however, can often benefit from additional techniques, such as
visual inspectin andultraviolet/visibl€infrared spectroscopybecause XRFEannot be
used to directly identify pigmenf22].

XRF has the following benefits: 1) it can be utilized to map the elements that make up
an object, 2) it is noinvasive and (3) it is portable. The limitations oXRF
spectroscopy arel) it cannot be used to detect elements with atomic numbers below
sodium (if collectd outside of a vacuum), due ter&y attenuation in aiand therefore

cannotbe usedto identify organic compound¢compounds containing carbon atoms

16



bonced to other atoms, most commonly hydrogen, oxygen, or nitro@gn) cannot
distinguish between pigments having the sateenent compositiofsuch asarious iron
earth pigments)3) pigments, such as Prussian blue, with high tinstigngth, are
difficult to identify because there is so little of the pigment in the gaBi and4)
because it is a point measurement, acquiring a regular grid of ckyssd@ spectrais
slow (a 1000by-1000 pixel grid, with a 100 m#ntegration time, would require
approximately 28 hours to acquire)

A regular grid of closehspace XRF spectra however,can be acquired, and the
result is a cube of XR&pecta. Each slice through théRF imaging spectroscopube is
the measured -ray fluorescence at each spatial pixel of an image fosirgle
fluorescence eneyg Figure 2-2 shovs an XRF cube collected fro@hrist in Majesty
with Twelve Apostlelsy the workshop of Pacino di Bonaguid@he face of the cube is a
single image from the cube. The depth (energy) dimension represents a stack of 2192

images, each reprageg a different energy.
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Figure 2-2: XRF image cube Q1 30 KeV, 2192bands), Christ in Majesty with Twelve
ApostlegWorkshop of Pacino di Bonaguida) (1320). Rosenwald Collection,
1952.8.277, National Gallery of Art (NGA), Washington, D.C.

2.2 Reflectance spectroscopy

Reflectance spectrospy is an analytical technique used to identify information
regarding themolecular composition and structureaofample. It involves measuring the
amount of light that reflects off an object at many different wavelengths. By plotting the
ratio of the iradiance of the reflected light to the incoming lighter a range of
wavelengthsthe method produces spectrum that can hesed as an identifier of the
materials that make up the spot in question. Materials can be identified, because
electronic and vilational features of molecules produceclaracteristicspectrum[24].
Figure 2-3 shows reflectance spectra captured using fiaer-optic reflectance
spectroscopyFORS)devicefor two blue pigmentsazurite (blue line) andcobalt blue
(redline). In the figure the regionare labeled, showing where electronic and vibrational
features are observed.
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Figure 2-3: FORS spectra of two blue paints: azurite (blue line) and cobalt blue(red
line).
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Reflectance spectroscopy is useadamservation science to determine how a painting
was made. This may involve identifying the pigment and pigment binder used in the
paint. Also, in the case @IS, it is possible to identify the underdrawing, showing the
artistoés or i giasaaylpreviolksevbrksithat ware sulveeglently painted
over . Thi s can provi de i nformati on about
comparing the underdrawing to the final work, changes nigde¢he artist can be
identified[3, 4, 5, 6, 9, 14]Two types of reflectance spectroscopy used by conservation
scientists will be discussed below: FORS and imaging spectroscopy.

A clear benefit of reflectancgpectroscopy is that it is nenvasive This allows a
conservation scientist to analyze any spot on a painting, whereas a method requiring a
physical sample can be usedly on certain regions or, in the case of some paintings,
where physical samiplg is not allowed at all. Additionally, reflectance spectroscopy

provides information about compounds and can be used to idesttifye organic
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compoundg[3, 4, 5,6, 14, 25, 26] For comparison, XRF can be usedly to infer
inorganic compound§?3]. Reflectance spectroscopy has limited utility when there is
little difference in the optical density between materials or whentariakis dark and
therefore does not reflect much light. Also, some pigments have skhgped transition

edges that require high spectral resolution (<5 nm) to be identified with reflectance
spectroscopy3]. Often inthose cases, XRF can be useful, because it provides element
information and is not affected by the similarity in optical density or by the sharpness of
the spectral features. It is because reflectance spectroscopy and XRF data provide
complementaryinformation about a work of art that it is appealing to fuse the two
datasets to attempt to produce more accurate and complete maps of materials that make

up a painting.

2.2.1 Fibeyoptic reflectance spectroscopy (FORS)

FORS spectra can be used to capture data in the range from ultraviolet (UV), through
visible and shortvavelength infrared (VNIR, 20@000 nm), and out to the neafrared
(NIR, 9002500 nm)[27]. The FORS device used to caqg data for this research is
made by ASD Inc. and contains a spectrometer that operates in the range260350
nm. To collect datathe user illuminateg spot on a painting and the reflected light is
directed through a fiber probe. The spectrometer §peeads the light into its component
wavelengths, thus producing a spectrum, whiemn ismeasured using a CCD detector
for the VNIR and an indium gallium arsenide (InGaAs) detector for the Wi data
used in this researclere captured with the fibeprobeapproximately 1 cm from the
painting. This produced a spot size of approximately 3 mm. The total acquisition time per

point was less than 5 secon@}. FORS is a useful technique, becauseait validate
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other refectance spectroscopy methgdls however,as withXRF, it is limited in that it

can be used to colleohly one point at a time.

2.2.2Reflectancemaging spectroscop{RIS)

In contrast with FORSRIS captures an imageather than a point, across a range of
wavelengthsFigure 2-4 illustrates a typical setup for a hyperspectral image cube of a
painting. The scamirror (SM) is usedd scan the area of the paintinghe imaging lens
(IL) focuses an image of the paintingto the slit.The slit allows only one vertical line
on the painting to pass into thmaging spectrometer (SP). The spectrometer then
produces a spectrum for each pixel along the slit. The set of spectna capitered using

the focal plane array (FBA

( ]

Painting

{:”} Lamps, filtered
for 1000-3000 nm

Sllt .
~—‘I' | s }}
SM SP

Figure 2-4: Top view of a ine-scanning imaging spectrometer (Courtesy dbr. John
Delaney) SM (scanmirror), IL (imaging lens), SP (imaging spectrometer), FPA
(focal plane array).

Figure 2-5 illustrates the set of spectra for a single line from the painting as captured by
the array. Each row in the image is the spectrum for one pixel along the slit. As the scan

mirror rotates, a differentertical line on the painting passes through the slit and is
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imaged. The result is a stack of images, as showgure 2-6, where each image in the

stack represents the amount of light reflected from the painting at a different wavelength
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Figure 2-5: Image of the vertical line on painting after dispersion by the
spectrometer(Courtesy of John Delaney)
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Figure 2-6: RIS cube L0001 2500nm, 525bands), Christ in Majesty with Twelve
ApostlegWorkshop of Pacinodi Bonaguida) (1320). Rosenwald Collection,
1952.8.277, National Gallery of Art (NGA), Washington, D.C.

As with reflectance spectroscopy in gemlermaging spectroscopy is namvasive In
contrast with FORS, it produces a global measure. Specifictlproduces an image

cube that containg spectum for each pixel from the painting. Spectroscopy in the
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visible and shortwavenfrared regions (VNIR, 4004 000 n m) shows the fnoc
el ectronic transitions t[B]laSpectpscopginthdllRe i n pa
region (10062500 nm) shows thevibrational band overtones and combinations

associated wittiunctional groupssuch ashydroxyl and carbonatesfound in inorganic

pigments[6]. Specifically, Avi brational band over
oils, animal glues, whole egg versus egg white tempera) at wave numbers > 4D00 cm
(<2500nm) can be used to se[famgenesl theeed | dent
imaging spectroscopy systems have lower spectral resolution than FORS devices;
however, imaging spectroscopy can be used to guide the selection ofbgqseat

methodqd4, 28].
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Chapter 3 - Registration

To characterize materials using a variety of investigative methbedsresearch
proposed here utilizes data from several sounicesjding color photography, infrared
(IR) photography, xadiography, reflectance imaging spectroscopy (RIS), amdyX
fluorescence(XRF) imaging spectroscopy. These sources are herein referred to as
different modalitiesand each can contribute unique informatibat can be useful in
describing a material. Because each modality offers a different way of quantifying the
properties of a material, it is important that the information extracted from each
modal i tyds data be or gani zdatd sources ampemdno r m
one another. For example, if a color image, an infrared (IR) image, andaaograph
have been captured fargivenpainting, the information extracted from local regions in
the images can be used jointly only if each of thallsegions in one image has been
aligned with the corresponding local region in the second image. By spatially aligning the
overlapping color and IR images to a common coordinate systemeg@teringthe
images,a method can usaformation extracted fim correspondingegiors togetherto
answer a question about that reg[@8]. A benefit of registering the modalities comes
from fusing the unique information from each modality. In tiwsrk, fusion of the
information from the different modalities refers to the combination of information in a
way that results in higher classification accuracy than could be achieved by the use of any

one modality alon30].
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Figure 3-1: (A) Color image of Johannes Vermeer's&irl with the Red Hat
(1665/1666). Andrew W. Mellon Collection, 1937.1.53, National Gallery of Art
(NGA), Washington, D.C., 8) infrared reflectanceimage (21007 2400 nm), C) x-
radiograph, and (D) summation of theregistered androtated x-radiograph and the
intensity-inverted and rotated infrared reflectance imagg31].

An example of this can be seen by comparing the colorematlp the xradiograph and

Il R i mage of J o Girhwith thes Red idat(Figere31A4)s The IR image
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