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Abstract 

Fusion of Reflectance and X-ray Fluorescence Imaging Spectroscopy Data for the 

Improved Identification of Artistsô Materials  

Works of art often are complex objects, and to fully understand how they were 

constructed requires a variety of tools. The tools are used to provide information about 

the object, including its age, origin, construction methods, and materials. Art conservators 

and historians use this information to better preserve and restore the object and to learn 

about the artistôs working methods and motivations. While those working in the cultural 

heritage field routinely use multiple point-based tools to draw conclusions, because a 

single tool may be insufficient, a full analysis of an object will require an automated 

approach for merging the results from multiple image-based tools. 

 In this dissertation, algorithms for automatically registering, classifying, and fusing 

data from multiple sources are described and demonstrated to identify the pigments used 

in the creation of works of art. The registration algorithm provides a means for 

registering and producing mosaics from three types of datasets that are commonly used in 

conservation science: 1) sets of overlapping sub-images, registered to a common 

reference image, from which a mosaic is generated (x-radiographs, IR reflectograms), 2) 

sets of images captured with different bandpass filters registered with one another 

(multispectral image sets), and 3) hyperspectral image cubes (reflectance imaging 

spectroscopy (RIS) and x-ray fluorescence (XRF) imaging spectroscopy, including data 

collected with an imaging system utilizing a scan-mirror), registered to a common 

reference image. An XRF scanner was constructed at the National Gallery of Art 

(Washington, D.C.) to obtain XRF imaging spectroscopy data, and a sum-of-Gaussians 

fitting algorithm was produced for generating element maps from the XRF imaging 
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spectroscopy data, as well as maps indicating the confidences in those element maps. A 

feature-based algorithm was produced for generating pigment maps from the RIS data, as 

well as maps indicating the confidences in those pigment maps, and a fusion algorithm 

was produced for merging information from the element and pigment maps. Finally, 

validation steps were performed to assess the accuracy of the registration, classification, 

and fusion algorithms, and the fusion was judged to provide improvements in the pigment 

maps and their associated confidences. 
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Chapter 1 -  Introduction  

 Traditionally, to identify a material used in the construction of a work of art, someone 

must take a small physical sample from it and then perform some form of chemical or 

microscopic analysis [1, 2]. This approach has several limitations, such as: 1) not every 

region can be sampled, because removing samples from pristine areas is strongly 

discouraged, and 2) the results can be applied only to the sampled region [1, 2]. The 

result of these limitations is a high probability of error in the material map (degree of 

certainty that the identified material is correct) produced using the data. This means that 

samples from two regions that are the same color need not be the same pigment. In an 

example taken from [3] (see Figure 1-1), they have shown a spatial distribution map of 

the white pixels in an image of Pablo Picassoôs Harlequin Musician (1924). 

 

Figure 1-1: (A) Visible color image of Pablo Picassoôs Harlequin Musician (1924), 

(B) White end members spatial distribution map obtained from analysis of the 

reflectance hyperspectral image cube (The green areas on the map are assigned to 

lead white and the red to zinc white containing gypsum as a bulking agent). Given in 

loving memory of her husband, Taft  Schreiber, by Rita Schreiber, 1989.31.2, 

National Gallery of Art, Washington D.C. [3]. 

http://www.nga.gov/content/ngaweb/collection-search-result.html?donorList=1813&donorObj=71072
http://www.nga.gov/content/ngaweb/collection-search-result.html?donorList=1813&donorObj=71072
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In the white regions of the painting, two different white pigments, zinc white (shown in 

red) and lead white (shown in green), were discovered. It is likely that the use of physical 

samples alone would have resulted in the misclassification of some of the paintingôs 

white regions if taken from only one area. 

 Point-based spectroscopic methods, such as fiber-optic reflectance spectroscopy 

(FORS) and x-ray fluorescence (XRF) spectroscopy, because they are non-invasive, 

remove the limitation of sampling of regions. These methods allow for points to be 

sampled in regions where a physical sample (a scraping or a cross-section) cannot be 

taken; however, they do not provide stratigraphy information that is obtained from a 

cross-section. Non-invasive methods make it less necessary to infer the material label 

from a point that can be physically sampled. The probabilities of error in the resulting 

material maps are, therefore, reduced for the points within regions where physical 

samples could not have been taken. Point-based methods have the additional limitation of 

being slow to collect. To collect an equally-spaced grid of points in a reasonable amount 

of time, the spatial sampling rate must be kept low. For example, it will take 29.1 hours 

to acquire a 1024x1024 pixel region with a 100 ms acquisition time per sample. The low 

sampling rate also contributes to higher probabilities of error in the material map, because 

either (1) the spot size must be made large, thus increasing the size of the pixel, which 

increases the likelihood of observing a mixture of materials (member of more than one 

class), or (2) regions between the samples must be assumed to be of the same class as the 

closest sample. 

 Image-based spectroscopic methods allow for the construction of image cubes, where 

a spectrum at each spatial pixel of an image makes up the cube. Or, if observed along the 



3 

 

spectral dimension, the cubes consist of stacks of images. An example is reflectance 

imaging spectroscopy (RIS) [3, 4, 5, 6, 7, 8]. RIS is a non-invasive method that produces 

cubes of reflectance spectra. Each slice through the cube is the measured reflectance at 

each spatial pixel of an image for a single wavelength of light. Figure 1-2 shows an 

extended near-infrared (ex-NIR) reflectance cube collected from Christ in Majesty with 

Twelve Apostles by the workshop of Pacino di Bonaguida. The face of the cube is a single 

image from the cube. The depth (wavelength) dimension represents a stack of 525 

images, each representing a different central wavelength. 

 

Figure 1-2: RIS cube (1000 ï 2500 nm, 525 bands), Christ in Majesty with Twelve 

Apostles (Workshop of Pacino di Bonaguida) (1320). Rosenwald Collection, 

1952.8.277, National Gallery of Art (NGA), Washington, D.C. 

RIS produces a regularly-spaced grid of spectra at a high spatial-sampling rate in a few 

minutes. RIS camera systems produce material maps with lower probabilities of error 

than those produced by physical sampling or by point-based methods. This is because the 

spacing between samples (spatial sampling interval) can be smaller than what can be 
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captured by a point-based method in a reasonable amount of time. Improvements in the 

probability of error are nonetheless limited by the size of the sensor array, and multiple 

cubes may have to be captured to address this limitation. 

 To further reduce the probability of error in the materials map produced by an image-

based spectroscopic method, registration tools have been developed that allow the cubes 

to be mosaicked to allow complete spatial coverage of a work of art at a high spatial 

sampling rate [9, 10, 11]. An example of one cube constructed by registering and 

mosaicking eight smaller cubes is shown in the Figure 1-3. 

 

Figure 1-3: Individual RIS image cubes (960 ï 1680 nm, 215 bands) (left), registered 

and mosaicked RIS image cube (right), Le Gourmet, Pablo Picasso (1901), Chester 

Dale Collection, 1963.10.52, National Gallery of Art, Washington, D.C. 
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 A second example of an image-based spectroscopic method is XRF imaging 

spectroscopy [12, 13].  XRF imaging spectroscopy is also a non-invasive method; but, 

rather than reflectance spectra, it produces cubes of x-ray fluorescence spectra. Each slice 

through the cube is the measured x-ray fluorescence at each spatial pixel of an image for 

a single fluorescence energy. Figure 1-4 shows an XRF cube collected from Christ in 

Majesty with Twelve Apostles by the workshop of Pacino di Bonaguida. The face of the 

cube is a single image from the cube. The depth (energy) dimension represents a stack of 

2192 images, each representing a different energy. In contrast to RIS, because XRF 

imaging spectroscopy cubes are collected one spectrum at-a-time, the collection time is 

significantly longer (a 1000-by-1000 pixel grid, with a 100 ms integration time, would 

require approximately 28 hours to acquire). 

 

Figure 1-4: XRF image cube (0 ï 30 KeV, 2192 bands), Christ in Majesty with Twelve 

Apostles (Workshop of Pacino di Bonaguida) (1320). Rosenwald Collection, 

1952.8.277, National Gallery of Art (NGA), Washington, D.C. 
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 The registration tools also allow for cubes, covering different spectral ranges, to be 

concatenated, and thus increasing the information available for spectroscopic analysis. 

This increased spectral coverage of the work of art at a high spectral sampling rate can be 

attained by registering the cubes to a common reference image, or to a set of registered 

reference images, and then concatenating the cubes in the spectral dimension. This is 

important, because different spectral regions contain different information that can be 

used to identify materials more accurately. The registration step allows the information to 

be fused and then used in a single classification step [14, 15]. 

 When generating material maps of two-dimensional works of art, such as paintings 

and works on paper and parchment, fusion of two modalities is useful when each 

modality provides unique information that can improve the accuracy of the maps. For 

example, RIS provides information related to molecular composition, while XRF imaging 

spectroscopy provides element information. Together they give a more complete 

description of the material, as shown in Figure 1-5. Figure 1-5A is the unit cell of azurite. 

Figure 1-5B shows the reflectance spectrum of azurite. The absorption features 

(vibrational features) related to the carbonate (CO3) and hydroxide (OH) functional 

groups are labeled. Figure 1-5C shows the XRF spectrum of azurite. The element features 

related to the copper KŬ and Kɓ peaks are labeled. Together the information from RIS and 

XRF imaging spectroscopy better describe azurite, or Cu3(CO3)2(OH)2, than either do 

alone.   
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Figure 1-5: (A) Unit cell of azurite (copper carbonate hydroxide), (B) reflectance 

spectrum of azurite, (C) XRF spectrum of azurite. 

1.1 Research Objectives 

 Advances in conservation science, from physical samples to non-invasive point-based 

samples to image-based methods, have improved the accuracy with which artistsô 

materials can be identified in works of art. The goal of this research was to improve 

material identification by: 1) generating material maps of works of art using multiple 

spectroscopy modalities, 2) generating confidence maps indicating the relative 

confidence in those materials maps, and 3) producing a fusion scheme that utilizes the 

multiple spectroscopy modalities to generate material maps with improved accuracy. 

1.2 Research Summary 

The research described here includes algorithms for identifying pigments used in the 

creation of two-dimensional works of art. The algorithms include those for automatically 

registering, classifying, and fusing data from multiple imaging spectroscopy modalities. 

The registration algorithm provides a means for spatially aligning and producing mosaics 
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for different types of datasets that are commonly used in conservation science. The 

classification algorithms include one for generating element maps from XRF imaging 

spectroscopy data and another for generating pigment maps from RIS data. The fusion 

algorithm merges features from the element and pigment maps to produce improved 

pigment maps. 

The registration algorithm is capable of automatically registering and producing 

mosaics from three different types of datasets: 1) sets of overlapping sub-images, 

registered to a common reference image, from which a mosaic is generated (x-

radiographs, IR reflectograms), 2) sets of images captured with different bandpass filters 

registered with one another (multispectral image sets), and 3) hyperspectral image cubes 

(RIS and XRF imaging spectroscopy, including data collected with an imaging system 

utilizing a scan-mirror), all registered to a common reference image. The registration of 

RIS cubes, covering different spectral ranges, to a common reference image produces a 

single RIS cube that covers a larger spectral range. Key to the algorithm's success is a 

novel method for filtering candidate control-point pairs. This method makes it possible to 

register images, such as x-ray images, that contain significant content (for example, 

canvas weave) that does not appear in the reference image. Results are shown for each of 

the types of datasets, and a validation study was performed to quantify the accuracy of 

the algorithm. This algorithm has been used to register more than 200 paintings at the 

National Gallery of Art (Washington, D.C.) and the Art Institute of Chicago. 

The XRF classification algorithm produces element maps from XRF imaging 

spectroscopy data, captured using a custom XRF imaging spectroscopy scanner designed 

and constructed at the National Gallery of Art (Washington, D.C.). The algorithm 



9 

 

estimates the peaks in the XRF dataset by finding the optimal set of Gaussian functions 

that sum to fit each spectrum. The element maps then are generated by integrating over 

the peaks associated with a set of elements known to exist in artistsô pigments. In addition 

to the element maps, associated confidence maps are produced for visualizing the 

confidence in the element maps. Multiple pigment, however, are composed of the same 

elements, therefore pigments maps are not generated from the XRF information alone.   

The RIS classification algorithm utilizes a feature-based approach for generating 

pigment maps from the RIS data. The RIS data have been captured using multiple 

hyperspectral imaging systems, covering different spectral ranges (400 ï 950nm, 962 ï 

1650 nm), including an extended near-infrared (ex-NIR) system (1000 ï 2500 nm) that 

was developed at the National Gallery of Art (Washington, D.C.). The algorithm 

identifies reflectance and absorption features from the RIS datasets, measures the 

proximity of those features to the features from a library of reference spectra for a set of 

pigments, and then combines the proximity measures for each library spectrum into a 

scalar value indicating how similar the data are to each pigment. The result is a set of 

maps for each pigment in the library. Associated confidence maps also are produced for 

visualizing the confidence in the pigment maps. 

The fusion algorithm merges element and pigment features to produce improved 

pigment maps. The algorithm starts with the pigment maps produced using the RIS-only 

features and then incorporates the XRF element features. Because the elements 

constituting each pigment are known, the element maps can be used to distinguish 

between two or more pigments that have similar RIS features, but different element 

compositions. Improvement in the fused pigment maps occurs in two ways. First, false 
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positives are reduced by removing matches in the pigment maps where the required 

elements for that pigment are not identified. Second, false negatives are reduced by 

removing ambiguous pigment matches that had reduced the confidence in a pigment map. 

Like the classification algorithms for the individual modalities, the fusion algorithm 

produces confidence maps that are associated with each pigment map. Confidence is a 

measure of how likely a given pigment assignment is to be correct, given the other 

possible pigments. Confidence will be low if there are multiple pigments that have 

similar RIS features. Confidence will be improved, relative to the RIS-only maps, when 

conflicting pigments are removed, based on their element composition. 

1.3 Original and Significant Contributions 

A significant result of this research was the creation of a robust registration and 

mosaicking algorithm that is capable of producing accurate results despite: 1) the content 

differences inherent in different imaging modalities, 2) differences due to changes made 

by the artist that are visible in only one modality, and 3) various differences in distortion 

between the imaging modalities, such as scan-mirror distortion and optical distortion of 

the lenses. The algorithm is capable of registering color and IR images, x-radiographs, 

and hyperspectral image cubes, such as RIS and XRF imaging spectroscopy datasets. A 

graphical user interface (GUI) has been created and multiple versions have been 

compiled to run on different operating systems to allow users of various technical skill 

levels and in different environments (for example, conservation and science labs) to 

utilize the algorithm to register images. The registration algorithm now is being used in 

conservation departments at several art galleries and museums around the world and has 

become a valuable tool used by conservation scientists in the analysis and treatment of 
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works of art. To date, over 200 works of art have been registered and mosaicked using 

the algorithm, including those in three major online catalogs at two institutions [16, 17, 

18]. 

 An additional component of this research was the contribution to the construction of 

an XRF imaging spectroscopy scanner at the National Gallery of Art (Washington, D.C.). 

A microcontroller was programmed to receive a set of analog trigger signals from a 

mechanical easel and then send a corresponding software trigger to a computer via a USB 

cable. Software tools were created for configuring data collections, collecting the data, 

viewing the progress of the scan, performing post-processing on the collected data, and 

manually parsing through the cube to view both spectra and the maps at various energies. 

When a software trigger is received from the microcontroller, the tool sends a command 

to an XRF detector to collect a spectrum. When the easel reaches the end of a row, the 

spectra for that row are saved to the hard drive, and the sum spectra for that row and an 

XRF map for a given energy are displayed. After the scan is complete, the trigger 

position information is used to align the rows of the scan, and the data are transformed 

from a binary file to a hyperspectral data cube format. The user then can load the cube 

and look at an image for a given energy, or can click on the image to view the spectra at 

that point. 

 This research also contributed to the construction of an extended-NIR (ex-NIR) 

hyperspectral camera system was also constructed at the National Gallery of Art 

(Washington, D.C.). Included in this research was the writing of various scripts for 

focusing the camera and post-processing, calibrating, and viewing the hyperspectral 

datasets. 
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 A significant result of the present research was the creation of a standalone 

classification algorithm for generating element maps from XRF imaging spectroscopy 

datasets. The algorithm requires little user intervention and does not require the user to 

have a background in material science. It can be operated easily by any member of a 

museum conservation department. The algorithm produces an element map for each 

element specified by the user, as well as an associated confidence map for each element. 

 The final significant contributions of the present research were new algorithms for 

generating pigment maps from RIS datasets and then fusing those pigment maps with the 

results from the XRF element maps to produce improved pigment maps. As above, these 

algorithms also require little user intervention to run them; however they do require that a 

spectral library be created, as well a spreadsheet of RIS and XRF features for each 

pigment in the library to be completed. Once this information has been provided, the 

algorithms can be operated easily by any member of a museum conservation department. 

These algorithms produce pigment maps for each pigment in the spectral library, as well 

as an associated confidence map for each element. 

 This research has led to the following publications and presentations: 

¶ John K. Delaney, Kathryn A. Dooley, Damon M. Conover, Suzanne Lomax, and 

Murray H. Loew, ñVisible and Infrared Imaging Spectroscopy of Paintings,ò 

Technart: Non-destructive and microanalytical techniques in art and cultural heritage, 

Catania, Italy (presented by John K. Delaney, 4/2015). 

 

¶ Damon M. Conover, John K. Delaney, and Murray H. Loew, ñAutomatic 

registration and mosaicking of technical images of Old Master paintingsò. Applied 

Physics A, 119: 1567-1575. DOI 10.1007/s00339-015-9140-1 (2015). 

 

¶ John K. Delaney, Kathryn A. Dooley, Damon M. Conover, Lisha Deming Glinsman, 

Suzanne Lomax, and Murray H. Loew, ñApplication of Visible and Infrared Imaging 

Spectroscopy to Analyze Paintings,ò AAAS 2015 Annual Meeting: Innovations, 

Information, and Imaging, San Jose, CA (presented by John K. Delaney, 2/2015). 
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¶ John K. Delaney, Kathryn A. Dooley, Damon M. Conover, Lisha Deming Glinsman,  

and Murray H. Loew, ñComparison of Reflectance Imaging Spectroscopy (RIS) and 

Macro XRF,ò Working Group Meeting on Macro X-ray Fluorescence Imaging on 

Works of Art, Antwerp, Belgium (presented by John K. Delaney, 2/2015). 

 

¶ Damon M. Conover, John K. Delaney, Kathryn A. Dooley, Paola Ricciardi, and 

Murray H. Loew. ñImage collection and post-processing in the field of cultural 

heritage". Winterthur/University of Delaware Art Conservation Masters-level 

Program (invited lecture, 4/2014). 

 

¶ John K. Delaney, Damon M. Conover, Kathryn A. Dooley, Lisha Deming Glinsman, 

Suzanne Q. Lomax, Michael Swicklik, and Murray H. Loew . "A novel macro-

scanner for collection of hyperspectral X-ray fluorescence (XRF) and visible-to-near-

infrared reflectance image cubes of paintings". Symposium on the Non-Invasive 

Analysis of Painted Surfaces: Scientific Impact and Conservation Practice 

(Smithsonian American Art Museum) (presented by John K. Delaney, 2/2014). 

 

¶ Kathryn A. Dooley, Damon M. Conover, Lisha Deming Glinsman, and John K. 

Delaney, ñComplementary Standoff Chemical Imaging to Map and Identify Artist 

Materials in an Early Italian Renaissance Panel Paintingò. Angew. Chem. Int. Ed., 

53: 13775ï13779. doi: 10.1002/anie.201407893 (2014). 

 

¶ The registration tool was used to register the images for Dutch Paintings of the 

Seventeenth Century, ed. Arthur K. Wheelock Jr., NGA Online Editions, 

http://purl.org/nga/collection/catalogue/17th-century-dutch-paintings [16]. 

 

¶ The registration tool was used to register the images for Monet Paintings and 

Drawings at the Art Institute of Chicago, ed. Gloria Groom (Chicago: Art Institute of 

Chicago, 2011). http://publications.artic.edu/reader/monet-paintings-and-drawings-

art-institute-chicago [17]. 

 

¶ The registration tool was used to register the images for Renoir Paintings and 

Drawings at the Art Institute of Chicago, ed. Gloria Groom (Chicago: Art Institute of 

Chicago, 2011). http://publications.artic.edu/reader/renoir-paintings-and-drawings-

art-institute-chicago [18]. 

 

¶ Damon M. Conover, John K. Delaney, and Murray H. Loew, ñAccurate 

accommodation of scan-mirror distortion in the registration of hyperspectral image 

cubesò. Proceedings of SPIE, Algorithms and Technologies for Multispectral, 

Hyperspectral, and Ultraspectral Imagery XIX, v. 8743 (May 2013). 

 

¶ Damon M. Conover, John K. Delaney, and Murray H. Loew, ñAutomatic 

Registration and Mosaicking of Conservation Imagesò. Proceedings of SPIE, Optics 

for Arts, Architecture,and Archaeology IV, v. 8790 (May 2013). 

 

http://purl.org/nga/collection/catalogue/17th-century-dutch-paintings
http://publications.artic.edu/reader/monet-paintings-and-drawings-art-institute-chicago
http://publications.artic.edu/reader/monet-paintings-and-drawings-art-institute-chicago
http://publications.artic.edu/reader/renoir-paintings-and-drawings-art-institute-chicago%20%5b137
http://publications.artic.edu/reader/renoir-paintings-and-drawings-art-institute-chicago%20%5b137
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¶ Damon M. Conover, John K. Delaney, Paola Ricciardi, and Murray H. Loew, 

ñTowards Automatic Registration of Technical Images of Works of Artò. Proceedings 

of SPIE, Computer Vision and Image Analysis of Art II, v. 7869 (January 2011): 

78690C. 
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Chapter 2 -  Imaging modalities 

 Conservation laboratories seek to answer questions regarding the interpretation and 

understanding of works of art, including: 

¶ How old is it?  

¶ Where does it come from?  

¶ What is it made of (material information)?  

¶ How was it made (working methods)? [19]. 

Regarding the question of what a painting is made of, it is important for the conservation 

of paintings to know what colorants, binders, and preparatory layers were used [20]. To 

this end, conservators utilize data from several imaging modalities, such as x-ray 

fluorescence (XRF) imaging spectroscopy and reflectance imaging spectroscopy (RIS). 

Each modality has qualities that are beneficial to the analysis of works of art, as well as 

qualities that limit its usefulness. 

2.1 X-ray fluorescence (XRF) spectroscopy 

 XRF spectroscopy involves illuminating a sample with x-ray photons. When a photon 

strikes an atom, it dislodges an electron from one of its inner shells. The resulting 

vacancy is filled with an electron from an outer shell. Since the inner shell has a higher 

binding energy than the outer shell, the excess energy is released as an Ŭ x-ray. The 

resulting vacancy in the outer shell is filled with an electron from a shell even father from 

the nucleus, and the excess energy is released as a ɓ x-ray [21]. A detector then is used to 

measure the number of photons emitted from the sample (fluorescence) across a range of 

energy levels, thus producing a spectrum, as shown in Figure 2-1. The energy of the x-

rays KŬ, Kɓ, LŬ, Lɓ, MŬ, and Mɓ, named according to the shell where the original vacancy 

occurred, are characteristic of specific elements; therefore, the positions of the peaks in 

the spectrum can be used to identify the elements present in the sample [21]. 
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Figure 2-1: XRF spectrum of a paint sample (spectrum courtesy of Brian Baade). 

 In conservation science, the analyses of XRF data are used by conservators in 

diagnosing and treating objects, and in the investigation of artistsô materials [22]. XRF 

can provide a survey of the elements that compose the paint at a given point in a painting. 

Using the list of elements detected, an analyst can often infer the artistôs palette [23]. The 

analysis of paintings, however, can often benefit from additional techniques, such as 

visual inspection and ultraviolet/visible/infrared spectroscopy, because XRF cannot be 

used to directly identify pigments [22]. 

 XRF has the following benefits: 1) it can be utilized to map the elements that make up 

an object, 2) it is non-invasive, and (3) it is portable. The limitations of XRF 

spectroscopy are: 1) it cannot be used to detect elements with atomic numbers below 

sodium (if collected outside of a vacuum), due to x-ray attenuation in air, and therefore 

cannot be used to identify organic compounds (compounds containing carbon atoms 
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bonded to other atoms, most commonly hydrogen, oxygen, or nitrogen), 2) it cannot 

distinguish between pigments having the same element composition (such as various iron 

earth pigments), 3) pigments, such as Prussian blue, with high tinting-strength, are 

difficult to identify because there is so little of the pigment in the paint [23], and 4) 

because it is a point measurement, acquiring a regular grid of closely-spaced spectra is 

slow (a 1000-by-1000 pixel grid, with a 100 ms integration time, would require 

approximately 28 hours to acquire). 

 A regular grid of closely-spaced XRF spectra, however, can be acquired, and the 

result is a cube of XRF spectra. Each slice through the XRF imaging spectroscopy cube is 

the measured x-ray fluorescence at each spatial pixel of an image for a single 

fluorescence energy. Figure 2-2 shows an XRF cube collected from Christ in Majesty 

with Twelve Apostles by the workshop of Pacino di Bonaguida. The face of the cube is a 

single image from the cube. The depth (energy) dimension represents a stack of 2192 

images, each representing a different energy. 
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Figure 2-2: XRF image cube (0 ï 30 KeV, 2192 bands), Christ in Majesty with Twelve 

Apostles (Workshop of Pacino di Bonaguida) (1320). Rosenwald Collection, 

1952.8.277, National Gallery of Art (NGA), Washington, D.C. 

2.2 Reflectance spectroscopy 

 Reflectance spectroscopy is an analytical technique used to identify information 

regarding the molecular composition and structure of a sample. It involves measuring the 

amount of light that reflects off an object at many different wavelengths. By plotting the 

ratio of the irradiance of the reflected light to the incoming light over a range of 

wavelengths, the method produces a spectrum that can be used as an identifier of the 

materials that make up the spot in question. Materials can be identified, because 

electronic and vibrational features of molecules produce a characteristic spectrum [24]. 

Figure 2-3 shows reflectance spectra captured using a fiber-optic reflectance 

spectroscopy (FORS) device for two blue pigments: azurite (blue line) and cobalt blue 

(red line). In the figure the regions are labeled, showing where electronic and vibrational 

features are observed. 
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Figure 2-3: FORS spectra of two blue paints: azurite (blue line) and cobalt blue (red 

line). 

 Reflectance spectroscopy is used in conservation science to determine how a painting 

was made. This may involve identifying the pigment and pigment binder used in the 

paint. Also, in the case of RIS, it is possible to identify the underdrawing, showing the 

artistôs original sketch, as well as any previous works that were subsequently painted 

over. This can provide information about the artistôs working methods. Also, by 

comparing the underdrawing to the final work, changes made by the artist can be 

identified [3, 4, 5, 6, 9, 14]. Two types of reflectance spectroscopy used by conservation 

scientists will be discussed below: FORS and imaging spectroscopy.  

 A clear benefit of reflectance spectroscopy is that it is non-invasive. This allows a 

conservation scientist to analyze any spot on a painting, whereas a method requiring a 

physical sample can be used only on certain regions or, in the case of some paintings, 

where physical sampling is not allowed at all. Additionally, reflectance spectroscopy 

provides information about compounds and can be used to identify some organic 
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compounds [3, 4, 5, 6, 14, 25, 26]. For comparison, XRF can be used only to infer 

inorganic compounds [23]. Reflectance spectroscopy has limited utility when there is 

little difference in the optical density between materials or when a material is dark and 

therefore does not reflect much light. Also, some pigments have sharp s-shaped transition 

edges that require high spectral resolution (<5 nm) to be identified with reflectance 

spectroscopy [3]. Often in those cases, XRF can be useful, because it provides element 

information and is not affected by the similarity in optical density or by the sharpness of 

the spectral features. It is because reflectance spectroscopy and XRF data provide 

complementary information about a work of art that it is appealing to fuse the two 

datasets to attempt to produce more accurate and complete maps of materials that make 

up a painting. 

2.2.1 Fiber-optic reflectance spectroscopy (FORS) 

 FORS spectra can be used to capture data in the range from ultraviolet (UV), through 

visible and short-wavelength infrared (VNIR, 200-1000 nm), and out to the near-infrared 

(NIR, 900-2500 nm) [27]. The FORS device used to capture data for this research is 

made by ASD Inc. and contains a spectrometer that operates in the range of 350-2500 

nm. To collect data, the user illuminates a spot on a painting and the reflected light is 

directed through a fiber probe. The spectrometer then spreads the light into its component 

wavelengths, thus producing a spectrum, which then is measured using a CCD detector 

for the VNIR and an indium gallium arsenide (InGaAs) detector for the NIR. The data 

used in this research were captured with the fiber probe approximately 1 cm from the 

painting. This produced a spot size of approximately 3 mm. The total acquisition time per 

point was less than 5 seconds [3]. FORS is a useful technique, because it can validate 
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other reflectance spectroscopy methods [4]; however, as with XRF, it is limited in that it 

can be used to collect only one point at a time. 

2.2.2 Reflectance imaging spectroscopy (RIS) 

 In contrast with FORS, RIS captures an image, rather than a point, across a range of 

wavelengths. Figure 2-4 illustrates a typical setup for a hyperspectral image cube of a 

painting. The scan-mirror (SM) is used to scan the area of the painting. The imaging lens 

(IL) focuses an image of the painting onto the slit. The slit allows only one vertical line 

on the painting to pass into the imaging spectrometer (SP). The spectrometer then 

produces a spectrum for each pixel along the slit. The set of spectra is then captured using 

the focal plane array (FPA).  

 

Figure 2-4: Top view of a line-scanning imaging spectrometer (Courtesy of Dr. John 

Delaney). SM (scan-mirror), IL (imaging lens), SP (imaging spectrometer), FPA 

(focal plane array). 

Figure 2-5 illustrates the set of spectra for a single line from the painting as captured by 

the array. Each row in the image is the spectrum for one pixel along the slit. As the scan-

mirror rotates, a different vertical line on the painting passes through the slit and is 
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imaged. The result is a stack of images, as shown in Figure 2-6, where each image in the 

stack represents the amount of light reflected from the painting at a different wavelength 

band.  

 

Figure 2-5: Image of the vertical l ine on painting after dispersion by the 

spectrometer (Courtesy of John Delaney). 

 

Figure 2-6: RIS cube (1000 ï 2500 nm, 525 bands), Christ in Majesty with Twelve 

Apostles (Workshop of Pacino di Bonaguida) (1320). Rosenwald Collection, 

1952.8.277, National Gallery of Art (NGA), Washington, D.C. 

As with reflectance spectroscopy in general, imaging spectroscopy is non-invasive. In 

contrast with FORS, it produces a global measure. Specifically, it produces an image 

cube that contains a spectrum for each pixel from the painting. Spectroscopy in the 
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visible and shortwave-infrared regions (VNIR, 400-1000 nm) shows the ñdiagnostic 

electronic transitions that give rise in part to the ócolorôò [3]. Spectroscopy in the NIR 

region (1000-2500 nm) shows the vibrational band overtones and combinations 

associated with functional groups, such as hydroxyl and carbonates, found in inorganic 

pigments [6]. Specifically, ñvibrational band overtone bands from paint binders (drying 

oils, animal glues, whole egg versus egg white tempera) at wave numbers > 4000 cm
-1 

(<2500nm) can be used to separate and identify these materialsò [6]. In general, these 

imaging spectroscopy systems have lower spectral resolution than FORS devices; 

however, imaging spectroscopy can be used to guide the selection of point-based 

methods [4, 28]. 
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Chapter 3 -  Registration 

To characterize materials using a variety of investigative methods, the research 

proposed here utilizes data from several sources, including color photography, infrared 

(IR) photography, x-radiography, reflectance imaging spectroscopy (RIS), and X-ray 

fluorescence (XRF) imaging spectroscopy. These sources are herein referred to as 

different modalities and each can contribute unique information that can be useful in 

describing a material. Because each modality offers a different way of quantifying the 

properties of a material, it is important that the information extracted from each 

modalityôs data be organized into a form in which the different data sources complement 

one another. For example, if a color image, an infrared (IR) image, and an x-radiograph 

have been captured for a given painting, the information extracted from local regions in 

the images can be used jointly only if each of the local regions in one image has been 

aligned with the corresponding local region in the second image. By spatially aligning the 

overlapping color and IR images to a common coordinate system, or registering the 

images, a method can use information extracted from corresponding regions together to 

answer a question about that region [29]. A benefit of registering the modalities comes 

from fusing the unique information from each modality. In this work, fusion of the 

information from the different modalities refers to the combination of information in a 

way that results in higher classification accuracy than could be achieved by the use of any 

one modality alone [30]. 
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Figure 3-1: (A) Color image of Johannes Vermeer's Girl with the Red Hat 

(1665/1666). Andrew W. Mellon Collection, 1937.1.53, National Gallery of Art 

(NGA), Washington, D.C., (B) infrared reflectance image (2100 ï 2400 nm), (C) x-

radiograph, and (D) summation of the registered and rotated x-radiograph and the 

intensity-inverted and rotated infrared reflectance image [31]. 

An example of this can be seen by comparing the color image with the x-radiograph and 

IR image of Johannes Vermeerôs Girl with the Red Hat (Figure 3-1A). The IR image 


