Numerical Investigation of Pattern formation
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Abstract Solutions with 0 <~ < 7.5 Mesh refinement: v = 10
| Investigate pattern formation in a two-phase system on a two-dimensional The minority constituent (¢ = 1) is with the dark (magenta) color,
manifold by numerically computing the minimizers of a Cahn-Hilliard-like and the second constituent (¢ = 0) is with the light (cyan) color. Figure 6: Solutions for v = 10, w = 0.25, and h = 0.045.
model for micro-phase separation of diblock copolymers. The total energy
of the system includes a short-range term - a Landau free energy and a | | (3) (ng, ns) = (1,1)  (b) (ng, 1s) = (0,1)  (c) (ng, 1s) = (2,2)
long-range term - the Otha-Kawasaki functional. The short-range term Figure 2: Small v Case Study: 0 < < 7.5,w =0.25, 3 =0.25 Ve e
favors large domains with minimum perimeter and the long-range inhibitory T PIRT R - ——— ( - \. |
term favors small domains. The balance of these terms leads to minimizers s e ' ' 3 i
with a variety of patterns, including single droplets, droplet assemblies, ‘ \ | ‘ ‘ , , ,
stripes, wriggled stripes and combinations thereof. For demonstration \ \. | . al ok uak
purposes, | focus on the triaxial ellipsoid, but our methods are general and | s ¥
can be applied to higher genus surfaces and surfaces with boundaries. . e N e T O
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The first two terms is named Landau free energy and the last term is a long Table 1: Solutions with 0 <~ < 7.5,w =10.25,3 = 0.25 0

range Inhibitory interaction term named Otha-Kawasaki functional. My

investigations are carried out by numerically computing the minimizers over a ; %tab'l't}’
suitable class of admissible functions subject to [,, udS = w. Fig.2 ~ ng n [ S, S
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