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Abstract 
We explore relationships between seven dimensions of land use in 1990 and 

subsequent levels of three traffic congestion outcomes in 2000 for a sample of 50 large 
U.S. urban areas.  Multiple regression models are developed to address several 
methodological concerns, including reverse causation and time lags.  Controlling for 
prior levels of congestion and changes in an urban area’s transportation network and 
relevant demographics, we find that: housing-job proximity is inversely related to 
commute time; density/continuity is positively related to roadway ADT/lane and delay 
per capita; and housing centrality is positively related to delay per capita.  Expect for 
proximity, the results suggest that congestion is not directly related to land use patterns 
as claimed by conventional wisdom.   
KEYWORDS: LAND USE; SPRAWL; TRAFFIC CONGESTION; COMMUTE TIME. 
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Introduction 
Traffic congestion has been listed as one of the most important problems worthy of 

policy attention in recent surveys of elected officials and citizens alike (National League 
of Cities, 2001; Baldassare, 2002).  It arguably cost Americans $67.5 billion in 2000 in 
time delay and wasted fuel, which equals approximately three-quarters the amount that 
the federal government spent on all surface transportation during the 1998 to 2000 
years combined (Schrank and Lomax, 2002).  In addition, virtually all studied urban 
areas have shown increased travel delay and congestion costs over the last twenty 
years, suggesting that the congestion problem is not likely to abate anytime soon 
(Downs, 1992; Schrank and Lomax, 2004).   

Scholars and casual observers have long asserted a connection between land use 
patterns and traffic congestion in urban areas (e.g., Burchell, et al., 1998).  
Conventional wisdom argues that sprawling development characterized by highly 
dispersed, low-density housing or employment patterns leads to more frequent and 
longer trips requiring motorized vehicles (especially automobiles), and thus to more 
overall traffic congestion (Downs, 1992; Gillham, 2002).  However, Peter Gordon, Harry 
Richardson and colleagues (1991; 1994) have argued that suburbanization of 
population and employment allows shorter trip lengths and/or higher travel speeds on 
average, which may lead to less overall congestion.  Although widely debated in the 
planning and policy literature, few studies have quantified the statistical relationship 
between land use patterns and congestion using comparative data across urban areas.  
Thus, the magnitude and significance of a relationship between land use and 
congestion remains unclear.   

Two major impediments to statistically sound, comparative studies of land use and 
congestion exist: a lack of good measures of congestion; and the difficulty in modeling 
the complex inter-relationships between congestion, land use and transportation 
infrastructure.  This paper focuses on overcoming the second impediment by outlining a 
conceptual model of the relationship between land use and congestion that is then 
tested with seven distinct measures of land use and three commonly used, albeit 
criticized, measures of congestion, for a sample of fifty U.S. urban areas.  The paper 
ends by evaluating the policy and planning implications of the study results. 
Previous Research 
Measuring Congestion 

Despite being discussed by transportation planners for over fifty years, little 
consensus exists as to the appropriate way to measure traffic congestion for entire 
urban areas (Meyer, 1994; Burchell, et al., 1998).  A review panel assessing the 
feasibility of congestion pricing argued that “there is no good measure of urban traffic 
congestion that is comparable across areas and that has been collected consistently 
over time” (Wachs, et al., 1994, p.104).  Two primary measures have been used to 
approximate congestion in the transportation planning literature: the average journey-to-
work travel time (commute time) and the average number of vehicles per freeway lane 
(ADT/lane).  Commute time data is available from the U.S. Census Bureau for all 
geographic aggregations commonly reported in the Decennial Census (i.e., central 
cities, counties, urbanized areas, metropolitan statistical areas), starting with the 1980 
Census.  ADT/lane is available from the Federal Highway Administration’s Highway 
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Performance Monitoring System (HPMS) for all urbanized areas with 200,000 or more 
population, and is available for each year starting with the 1989 report year.  
Conceptually, ADT/lane evaluates the operational efficiency of the entire freeway 
system to accommodate travel demand and directly estimates congestion.  By contrast, 
average commute time only indirectly estimates congestion.  In effect, commute time is 
a function of both travel distance and speed, where low speeds suggest travel during 
congested conditions.  While high values of ADT/lane clearly indicate that roadways are 
congested on average, congestion can only be inferred from high values for commute 
times.   

The Texas Transportation Institute has also developed a number of frequently cited 
measures of traffic congestion for 85 major urbanized areas using HPMS data, for each 
year since 1982 (Schrank and Lomax, 2004).  The roadway congestion index (RCI) 
computes the ratio of the average travel occurring on roadways to a threshold believed 
to represent the start of congested conditions (e.g., 13,000 ADT/lane for freeways).  
Thus, RCI is a modified version of ADT/lane.  The travel time index (TTI) converts 
ADT/lane to an estimate of the speed of travel occurring during peak conditions (i.e., 
AM and PM rush hours) and compares this with speeds under free-flow conditions (i.e., 
60 mph for freeways). With the TTI, the number of hours per year attributable to delay 
can be computed, and this number can be adjusted by the total population or the 
number of peak hour travelers to generate an estimate of the number of hours of 
congestion delay per capita or per traveler per year.   

All available measures have been criticized and can offer only incomplete 
assessments of the congestion phenomenon.   First, the measures are averaged across 
time (e.g., annual averages) and space (e.g., entire urban areas), which obscures much 
variation in congestion experienced at particular times of the day or week or in particular 
parts of the urban area (Wachs, et al., 1994).  Second, ADT/lane and derived measures 
from the Texas Transportation Institute consider only roadway travel, although the 
overall effects from roadway congestion on public welfare may arguably be mitigated in 
urban areas with well-established public transportation networks (Surface 
Transportation Policy Project, 2001).  Third, the TTI and delay per capita measures are 
computed for peak travel hours only (i.e., 6-9am and 4-7pm).  Given the large increase 
in non-work and non-peak travel that has been documented using Census and travel 
diary data, these measures may overlook a substantial portion of the congestion 
phenomenon in urban areas (Wachs, et al., 1994).  Fourth, commute time is self-
reported, which may be imprecisely reported due to rounding or recall error (Wachs, et 
al., 1994).  Finally, commute time aggregates travel time across modes, obscuring 
travel time differences between using private vehicles (i.e., cars, trucks and 
motorcycles) and public transportation (Pisarski, 1992).  Travel times in the aggregate 
may be longer in areas with well-established public transportation systems because 
travel speeds on public transportation are generally slower than for single-occupancy 
vehicles.  However, commute time data has not consistently been reported separately 
by mode in the Decennial Census (i.e., it was reported by mode in 2000 but not in 
1990).1   

Despite measure, most studies have found worsening congestion over time in virtually 
all studied areas.  The average annual hours of congestion delay for 85 studied 
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urbanized areas has increased from 16 hours in 1982 to 38 hours in 1992 to 46 hours in 
2002 (Schrank and Lomax, 2004).  A study of congestion in California from 1976-1994 
also found a trend of increasing congestion using a congestion index that accounts for 
congestion on six different roadway types (Boarnet, et al., 1998).  Average commute 
times for all modes across the entire U.S. have increased from 21.7 minutes in 1980 to 
22.4 minutes in 1990 to 25.5 minutes in 2000, although 1 minute of the 1990-2000 
increase is attributed to a change in the maximum allowed commute time on the 
Decennial Census survey instrument (Reschovsky, 2004).  Quite a lot of discussion 
surrounded the finding that commute times increased little during the 1980s and 
decreased significantly in several areas (Gordon, et al., 1991; Pisarski, 1992), which 
Gordon, Richardson and colleagues attributed to economically rational decisions on the 
part of commuters to relocate their jobs and/or housing to maintain relatively constant 
commute times (Gordon, et al., 1991).  Whether or not this is the case, subsequent 
significant increases in commute time were found 1990-2000 (McGuckin and 
Srinivasan, 2003; Reschovsky, 2004), suggesting that even with this indirect measure, 
congestion appears to be getting worse over time.   
Understanding Congestion 

Several factors may be used to explain the growth in congestion over time: (1) 
population size, growth rates, and other demographic characteristics; (2) pace and 
extent of road building and other transportation network improvements; (3) provision of 
public transportation; and (4) patterns of land use.  After providing a brief overview of 
research on the first three factors, the remainder of this paper focuses on understanding 
the relationship between congestion and land use.   

Descriptive attempts to understand congestion in light of population size and growth 
rates have generated inconsistent or inconclusive results.  Gordon, Kumar and 
Richardson (1989a) found little relationship between city size and average commute 
times in 10 of the largest urbanized areas as of 1980.   Examining commute time in the 
20 largest urbanized areas in 1990, Gordon and Richardson (1994, p.15) again found 
little relationship with city size (characterized as “at best weak”), although the shortest 
commute times were found in the smaller areas.  Likewise, Gordon and Richardson 
(1994) found little relationship between population growth rates in 1980-1990 and 
commute times in 1990 for the 20 urbanized areas.  However, Schrank and Lomax 
(2004) found that congestion was highest in the largest population size group of 
urbanized areas as of 2002 (measured by the TTI), and that the largest change in delay 
per capita from 1982-2002 occurred in the largest area group, with the smallest change 
in the smallest area group.   

Another possible explanation for worsening congestion may be a change in 
demographics.  Rising incomes appear to alter economic incentives in ways that 
encourage more overall travel, regardless of mode (Crane, 1996).  Rising incomes may 
also account for the rapid increase in private vehicles per household, which has 
mirrored the increase in travel demand and out-paced population growth over the past 
several decades (Gillham, 2002).   

It is clear that road building and other large transportation investments are not likely to 
increase quickly enough to stave off traffic congestion.  The Surface Transportation 
Policy Project (2001) found that, while road-building did keep pace with population 
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growth 1990-2000 in 68 urban areas, areas with higher road-building rates had slightly 
higher levels and growth in delay per capita than areas with slower road-building rates 
1990-2000, suggesting that road building did not keep up with congestion.  The likely 
explanation for this result is that travel increased at a faster rate than road building or 
other adjustments (e.g., efficiency improvements on existing roadways) could be put in 
place to constrain growth in congestion.  Whether or not travel increased as a result of 
increased capacity – known as the induced travel hypothesis – Schrank and Lomax 
(2004) found that road building kept pace with travel demand in only five large urban 
areas (where demand grew less than 10% faster than roadway capacity), while a 
“significant mismatch” existed between capacity and demand (with greater than 30% 
more growth in demand) in 54 urban areas.   

Public transportation also appears unlikely to constrain the overall growth in traffic 
congestion, considering the already small and declining proportion of work trips 
occurring on public transportation (Reschovsky, 2004).  However, public transportation 
does moderate the effect of congestion on public welfare.  Schrank and Lomax (2004) 
estimated that the 85 largest urban areas would have had over a billion more hours of 
delay per capita in 2002, at a cost of $20 billion in lost productivity and wasted fuel, if all 
trips taken on public transportation had been taken on private transportation modes.  
Likewise, the Surface Transportation Policy Project (2001) found that the “burden of 
congestion” is less in areas with extensive public transportation systems than in areas 
with less variety in transportation modes, given similar overall levels of congestion.   

Finally, patterns of land use in urban areas likely influence the levels of and growth in 
traffic congestion over time.  Specifically, patterns of housing and employment in an 
urban area structure the origins and destinations of travel trips, which determine travel 
demand (in part), and influence the efficiency of the transportation network to handle 
travel demand.  The authors (Galster, et al., 2001; Cutsinger, et al., 2004) have 
identified seven conceptually and operationally distinct dimensions of land use that 
might be related to traffic congestion: 
§ Density: the degree to which development occurs in an intensive manner relative to the 

land area capable of being developed (termed “developable land”); 

§ Continuity: the degree to which developable land has been developed in an unbroken 
fashion throughout the metropolitan area; 

§ Concentration: the degree to which development is located disproportionately in a 
small number of square-mile cells comprising the metropolitan area; 

§ Centrality: the degree to which development is located nearer to the core of the 
metropolitan area, relative to the total land area; 

§ Proximity: the degree to which a given land use (i.e., housing or employment) is located 
near to other land uses across the metropolitan area, relative to the total land area; 

§ Mixed-Use: the degree to which different land uses are located within the same square-
mile cells comprising the metropolitan area; 
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§ Nuclearity: the degree to which employment is disproportionately located in the core, as 
opposed to dispersed in a multi-centric fashion. 

Conventional wisdom suggests that sprawling development characterized by highly 
dispersed, low-density housing or employment patterns leads to more frequent and 
longer trips requiring motorized vehicles (especially automobiles), and thus to more 
overall traffic congestion (Downs, 1992; Gillham, 2002).  However, the density and 
concentration of development are positively associated with localized congestion due to 
the confluence of trips in a confined space (Wachs, et al., 1994).  Descriptive analyses 
have found that population density appears to relate directly to congestion across urban 
areas (Boarnet, et al., 1998; Gillham, 2002), although density shows little relationship to 
commute time in the largest urban areas (Gordon, et al., 1989a).  Other land use 
dimensions are less well studied.  Thus, while it is believed that land use patterns may 
play an important role in mitigating or slowing the growth of congestion in urban areas, 
few studies have explored the relationship between land use and congestion across 
more than a small number of urban areas or examined multiple measures of land use 
beyond population density.  Even fewer studies have controlled for confounding factors 
also known to affect traffic congestion, such as the transportation network and 
demographic change.  The remainder of the paper focuses on developing and testing a 
model of land use and congestion for fifty large U.S. urban areas that uses multiple 
measures of land use and controls for changes in the transportation network and 
demographics that might influence congestion. 
Modeling Congestion and Land Use Patterns 
Methodological Concerns 

Several methodological issues should be considered when modeling congestion and 
land use patterns, including reverse causation (simultaneity) and time lags.   

Conceptually, congestion levels are a function of the balance between travel demand 
and supply.  Urban areas with higher levels of travel demand relative to supply will likely 
experience congestion.  However, one must be careful in modeling congestion using 
direct measures of supply and demand, given the possibility of reverse causation 
(simultaneity).  That is, high levels of congestion may cause persons to alter their travel 
behavior, which might affect the amount of roadway demand or the demand for public 
transportation in an urban area.  Likewise, congestion levels may also influence the 
supply of transportation provided in an urban area.  Highly congested areas may 
attempt to build their way out of congestion by adding roadway capacity and/or by 
expanding public transportation networks.  While we might expect that persons would 
adjust their travel demand relatively quickly to changes in congestion levels (because of 
its direct personal travel costs), the transportation network is much less likely to change 
immediately in response to congestion levels.  Although transportation planners can 
forecast growth in travel demand, and plan accordingly, most major transportation 
projects take 10-15 years to complete from time of inception.  During this time, 
congestion can change significantly, and is likely the reason why road-building efforts 
rarely keep pace with growth in travel demand or congestion.  For these reasons, 
simultaneity bias appears to be a more significant problem for congestion models that 
include travel demand than for models that include travel supply.  Both travel demand 
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and supply, however, are likely to be important determinants of congestion and should 
be included in some fashion in congestion models. 

Just as congestion may affect transportation, it also may affect land use patterns.  
Areas struggling with traffic congestion may attempt to concentrate development along 
public transportation corridors or at nodes to make travel in the area more efficient.  
However, the length of time over which this affect occurs is likely to be as long or longer 
than for transportation, in that the spatial structure of an urban area changes slowly over 
time.  It takes considerable time to change zoning or other planning behavior to allow for 
different land use patterns, and it may be quite difficult to coordinate planning behavior 
across jurisdictions within an urban area to achieve a desired effect on congestion.  The 
long lags reduce the likelihood of significant simultaneity bias in models that include 
land use patterns as determinants of congestion. 

However, the opposite temporal problem arises with the use of land use in a 
congestion model.  That is, because land use patterns change only slowly over time, the 
speed at which land use affects congestion may be relatively slow compared with the 
effect on congestion from other variables, such as demographics or transportation 
supply.  For this reason, models of congestion must be cognizant of the timing under 
which each variable operates, and consider the use of time lags or other adjustments to 
account for slowly operating variables such as land use.  A cross-sectional model with 
no time lags may generate biased coefficients for the land use variables. 
Previous Models 

A number of scholars have modeled traffic congestion as a function of land use 
patterns, although the success with which each has addressed the various 
methodological concerns outlined just above remains uneven.   

Izraeli and McCarthy (1985) first explored the relationship between population density 
and commute time, using cross-sectional data for 61 metropolitan statistical areas from 
the mid-1970s.  They found a positive relationship between population density and 
commute time, which they attribute in part to localized congestion caused by increased 
density.  This relationship was statistically significant even while controlling for 
population size, income and education levels, housing age, public transportation usage, 
and fuel cost.  Izraeli and McCarthy may have introduced simultaneity bias by including 
public transportation usage as a determinant of travel time.  That is, the level of 
congestion in an urban area may influence the propensity of persons to use public 
transportation.  An alternate measure of public transportation supply rather than usage 
might improve the model, if properly structured.  In addition, alternate land use 
measures might be introduced to account for the possibility of differing effects beyond 
that provided by overall population density. 

Gordon, Kumar and Richardson (1989b) used multiple measures of land use patterns 
in their study of commute time in 82 metropolitan statistical areas as of 1980.  Using 
satellite data from the U.S. Geological Survey, the authors developed three measures of 
density (residential, industrial and commercial), computed as a ratio of the average 
intensity of each use to the amount of land in each use in the urban area.  The authors 
also included a measure for the proportion of employment in the largest city of the 
metropolitan area, which estimates the dimension of land use we call nuclearity.  The 
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authors found that residential and commercial densities were positively related to 
commute time for persons using automobiles, while industrial density was negatively 
related to commute time by auto.  Likewise, the proportion employment in the largest 
city was positively related to commute time by auto, as was the spatial extent of the 
area.  The authors concluded that “policentric or dispersed spatial structures reduce 
rather than lengthen commuting times” (Gordon, et al., 1989b, p.148).  The auto 
commute time model also controlled for the percent of commuters driving to work, which 
may introduce simultaneity bias into the coefficients considering the likely influence of 
average commute times on choice of transportation mode.   

Malpezzi (1999) also explored the relationship between land use and commute time in 
a study of all U.S. metropolitan statistical areas as of 1990.  Malpezzi (1999) introduced 
two measures of land use into the model: the median population density (predicted from 
another equation) and the concentration of development, measured as the ratio of 
population of the largest central city in a metropolitan statistical area to population in all 
central cities of a metropolitan statistical area.  To address the potential simultaneity 
problem caused by including transit supply as a determinant of commute time, Malpezzi 
used the predicted value from a separate transit supply equation as an instrumental 
variable in the commute time model.  Unlike Izraeli and McCarthy (1985) and Gordon, 
Kumar and Richardson (1989b), Malpezzi found that population density was negatively 
related to commute times, while concentration was positively related to commute times, 
both at statistically significant levels.   

Ewing, Pendall and Chen (2003) explored the effect of land use on commute time and 
congestion delay per capita, for 83 metropolitan statistical areas in both 1990 and 2000.  
The authors generated four composite indices of land use, which they termed 
residential density, land use mix, degree of centering, and street accessibility.  Four 
separate principal components analyses were run on multiple measures in each of the 
four pre-conceived categories, and the primary factor was selected as the composite 
index for that category.  Thus, the residential density index was comprised of seven 
different measures of residential density, including gross population density, percentage 
population in low density and high density tracts, and weighted average housing lot 
size.  The land use mix index is comprised of six measures, including percentage 
residents in close proximity to businesses, shopping, or an elementary school, and 
measures of the jobs-housing balance.  The degree of centering index is comprised of 
six measures, including the coefficient of variation of population density across tracts, 
the percentage population within 3 and 10 miles of the CBD, and the weighted ratio of 
population centers to the largest population center.  Finally, the street accessibility index 
is comprised of three measures of block length.  The authors used the four composite 
indices, with four control variables (population size, per capita income, proportion 
population of working age, and average household size), in two cross-sectional models 
of congestion as of 1990 and 2000.  For the 2000 cross-sectional model, the authors 
found that the land use mix index was negatively related and the street accessibility 
index was positively related to commute time; and that the degree of centering index 
was negatively related and the street accessibility index was positively related to 
congestion delay per capita.  For the 1990 cross-sectional model, the authors found the 
same results, but also that the centering factor was negatively related to commute time.  
The Ewing, Pendall and Chen model includes the most complete set of land use 



9 

variables of any of the land use and congestion studies to date, but did not include any 
variables for transportation (supply or demand), which is likely an important determinant 
of congestion, albeit possibly simultaneous, and its omission may bias the land use 
results. 

Gordon, Lee and Richardson (2004) also modeled the effect of land use on commute 
times in 77 large metropolitan areas as of 1990 and 2000.  To measure land use, the 
authors used population density and the proportion of employment outside of central 
cities within the metropolitan area (a measure of the concentration of employment).  The 
authors also included measures for demographics (median household income, 
multiworker families, households with children), housing market flexibility, and measures 
of both transportation supply and demand (proportion commuters using transit, number 
of vehicles per household, and freeway lane miles per 1,000 population).  As mentioned 
above, congestion may influence the decisions about mode of transportation and the 
number of vehicles each household owns, suggesting the possibility of simultaneity bias 
in the model.  Regardless, the authors found that population density was negatively 
related and the suburbanization of employment was not related to commute time in both 
1990 and 2000.  The authors also pooled the data from 1990 and 2000 into one model, 
in which the suburbanization variable showed a significant and negative relationship to 
commute time in 2000, as did population density.   

Taken together, previous comparative literature has not generated consensus 
regarding the direction or magnitude of a relationship between land use and traffic 
congestion, and in many cases has generated conflicting results.  For instance, Izraeli 
and McCarthy (1985) and Gordon, Kumar and Richardson (1989b) found a positive 
relationship between population or residential density and commute time, while 
Malpezzi (1999) and Gordon, Lee and Richardson (2004) found a negative relationship 
between population density and commute time, and Ewing et al. (2003) found no 
relationship between residential density and commute time or delay per capita.  Instead, 
Ewing et al. found that the land use mix and street accessibility had significant 
relationships with congestion.  The concentration of employment or population in central 
areas was found to be positively related to commute time by Gordon, Kumar and 
Richardson (1989b) and Malpezzi (1999), negatively related to congestion in Ewing, 
Pendall and Chen (2003), and was not significantly related to commute time in studies 
by Ewing, Pendall and Chen (2003) or Gordon, Lee and Richardson (2004).  Contrary 
results have likely arisen because the studies differ in the year of data studied, the 
number of areas studied, the dimensions of land use studied, the measure of 
congestion used, the number and type of control variables used, whether the models 
included variables to control for transportation (either supply or demand), and whether 
any adjustments were made for simultaneity bias. 

The lack of consensus in the land use and congestion literature suggests that further 
refinement of the models may be necessary, paying special attention to the 
methodological issues mentioned above.  Building on earlier work, we next advance a 
conceptual model of the complex spatial and temporal relationships between land use, 
congestion and transportation, and test it for a sample of fifty large U.S. urban areas.  
Our model is the first to incorporate a time lag, and thus our results will not be directly 
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comparable to earlier model results.  However, we hope that this research will stimulate 
further debate within the field as to the best means to model land use and congestion. 
Methods and Data 
Conceptual Model 

The above discussion paints a complicated picture of relationships between land use, 
congestion, transportation demand and supply, and other likely influences on 
congestion.  Here we attempt to bring clarity to the field by explicitly outlining the implied 
relationships in a series of equations.   

We begin by positing that congestion at a given time is a function of travel supply and 
demand at that time, measured by the transportation network and usage of that 
network.  The transportation network at a given time is a function of the transportation 
network at a previous time and congestion at a previous time, plus any new 
transportation investments that occurred during the two periods.  Network usage is a 
function of the pattern of land uses in an urban area, which generate trips, plus other 
demographic and preference factors that generate trips.  However, the speed at which 
land uses affects network usage occurs slowly relative to demographic and preference 
factors generating trips, suggesting that the pattern of land uses in the previous time 
period is a more appropriate measure of land use when modeling congestion than the 
pattern in the current period.  Land use patterns are also a function of the transportation 
network of the previous period.   

This structural model can be summarized symbolically as follows: 
Ct = f (Ut, Tt, [Xt]) (1) 

Tt = f (Ct-1, Tt-1, [•M]) (2) 

Ut = f (Lt, Tt, [Yt]) (3) 

Lt = f (Lt-1, Tt-1, [•Z]) (4) 

Via substitution we obtain: 
Ct = f (Ct-1, Lt-1, Tt, Tt-1, [Xt], [Yt], [•M], [•Z]) (5) 

Where:  C represents congestion  
U represents network usage 
T represents transportation network 
L represents land use patterns  
[M,X,Y,Z] are vectors of control variables that also determine trips 
t represents the current period 
t-1 represents the previous period 

We estimate the reduced form of the structural model represented by equation 5.  Given 
that most relevant data are collected every ten years, we posit that ten years should be 
sufficient to account for the lag between time t and t-1.  Instead of using both 
transportation network measures at time t and time t-1, which are likely to be highly 
related, we use the change in the network between time t-1 and t (•T).   

Inclusion of the lagged congestion term as an explanatory variable helps to control for 
idiosyncratic influences in each urban area that are difficult to include explicitly, such as 
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the policy or fiscal environment, and make it less necessary to control for all plausible 
variables in vectors M, X, Y, or Z that also determine trips.  Given the concern 
expressed above about reverse causation between congestion and land use, the lag in 
land use variables ensures that causality is measured in the intended direction.   

The reduced form equation has intuitive appeal as a model specification.  In effect, by 
controlling for congestion in the earlier period, estimation of equation 5 allows us to 
determine the slow-moving influence of land use patterns at time t-1 on the subsequent 
change in congestion outcomes from time t-1 to time t.  Readers should note that any 
effect found likely understates the total effect of land use on congestion, given that land 
use in previous periods may have influenced congestion in t-1.  Likewise, any effect of 
land use in time t-1 on the change in transportation network over the period t-1 to t will 
not be captured in the land use coefficients.  However, any demonstrated effect will be 
suggestive of the causal relationship between land use and congestion, given that other 
plausible determinants have been appropriately included in the model. 
Sample  

The study sample of 50 areas was drawn from the 100 largest metropolitan statistical 
areas in the United States, based on 1990 population.  This sample was regionally 
stratified and then a proportionate random sample was drawn from each of the four 
Census regions.  The sample includes 11 areas from the Northeast region of the 
country, 11 areas from the North-Central region, 12 areas from the Western region, and 
16 areas from the Southern region.   Table 1 lists the complete sample with relevant 
details.   

[Table 1 about here] 

Model Variables 
Consistent with the conceptual model presented above, we employ four sets of 

variables in our models: congestion outcomes, land use variables, transportation 
network variables, and demographic controls.  Descriptive statistics for all the model 
variables are listed in Table 2.   

[Table 2 about here] 

Congestion Measures 
While acknowledging all of the criticisms discussed earlier, this study employs three 

measures of traffic congestion as a way to assess robustness:  
§ Commute Time: the average one-way travel time to work (in minutes; averaged across 

all modes) as reported by the U.S. decennial census (U.S. Census Bureau, 2004);  

§ ADT/Lane: the average daily traffic per freeway lane (in vehicles per freeway lane per 
day) as reported by the Federal Highway Administration (Federal Highway 
Administration, 2001); and 

§ Delay Per Capita: the annual peak hour highway congestion delay per traveler (in hours 
per year per person) as computed by the Texas Transportation Institute (Schrank and 
Lomax, 2004).   
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All three measures of congestion are for the primary urbanized area (UA) within each 
metropolitan statistical area (MSA), as of 1990 and 2000.  While most previous studies 
have used MSAs as their unit of analysis, UA geography more closely approximates the 
relevant geography affected by traffic congestion, with the exception of some relatively 
small choke points in the urban fringe.  Commute time and ADT/lane data are available 
for all 50 of the study areas, while delay per capita data are available for 41 of the 50 
study areas.2  Table 3 ranks the sample areas according to the three congestion 
measures. 

[Table 3 about here] 

Land Use Patterns 
This paper builds on a multi-phase research project to define and measure sprawl in 

U.S. urban areas.  In previous phases, the authors imposed a one-mile square grid over 
each sample metropolitan area; tabulated the number of housing units and jobs in each 
cell using data from the 1990 Census of Population and 1990 Census Transportation 
Planning Package; excluded very low-density land and land with little economic 
attachment to the urbanized portion of each sample area; and excluded land that could 
not be developed for physical reasons (termed “undevelopable land”) using data from 
the 1992 National Land Cover Data Base (see Wolman, et al., 2005 for details).  The 
remaining land became the Extended Urban Area (EUA), within which the authors 
calculated the following fourteen indices of land use to measure the seven land use 
dimensions listed above (Cutsinger, et al., 2004): 
§ Density – the degree to which the housing units or jobs within the EUA are developed in 

an intensive manner relative to land area capable of being developed, operationalized 
as:  

o Housing Unit Density on Developable Land—the average number of housing units 
per square mile of developable land in the EUA.  

o Job Density on Developable Land—the average number of jobs per square mile of 
developable land in the EUA. 

§ Continuity—the degree to which developable land has been developed in an unbroken 
fashion throughout the metropolitan area.  We distinguish two types of continuity, micro-
continuity and macro-continuity.  Micro continuity measures the extent to which 
developable land within the EUA has been skipped over.  Macro-continuity measures the 
extent to which development proceeds continuously from the edges of the urbanized 
area or, instead, exhibits a leapfrog or scattered pattern to the edge of the EUA.  Micro-
continuity and macro-continuity are each operationalized by one index: 

o Micro-Continuity—percentage of square-mile units within the EUA in which 50% or 
more of the land that is or could be developed has been developed.  

o Macro-Continuity outside UA—the share of the EUA that is classified as the 
Urbanized Area (UA) by the U.S. Census Bureau.   

§ Concentration—the degree to which housing units and jobs are located 
disproportionately in a few grids within the EUA.  Our concentration indices are identical 
to the common dissimilarity or Delta index.  A “D” index may be interpreted as the 
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percentage of housing units or jobs that would need to shift cells in order to achieve an 
even distribution in all of the square-mile grid units across the EUA.  We operationalize 
concentration indices for both housing and jobs: 

o Housing Unit Concentration on Developable Land —the percentage of housing units 
that would need to move in order to produce an even distribution of housing units 
within square-mile units of developable land across the EUA. 

o Job Concentration on Developable Land —the percentage of jobs that would need to 
move in order to produce an even distribution of jobs within square-mile units of 
developable land across the EUA.  

§ Centrality—the degree to which a land use is located nearer the core of the EUA.  We 
define the core of the EUA as the location of city hall of the major central city for each 
metropolitan area.  We standardize centrality by the average distance to city hall from a 
centroid of the square-mile grids comprising the EUA, so as not to tautologically define 
larger EUAs as less centralized.  Centrality is operationalized by two indices: 

o Standardized Housing Centrality—the ratio of the average distance to city hall from 
the centroids of the grids comprising the EUA to the average distance to city hall of a 
housing unit within the EUA. 

o Standardized Job Centrality—the ratio of the average distance to city hall from the 
centroids of the grids comprising the EUA to the average distance to city hall of a job 
within the EUA. 

§ Proximity—the degree to which housing units, jobs, or housing unit / job pairs are close 
to each other across the EUA.  Proximity, like centrality utilizes weighted averages of the 
distance between jobs, housing units, or job / housing unit pairs across all grids in the 
EUA so that jobs and housing units on the urban fringe (and therefore less proximate to 
clusters of jobs and housing units near the urban core) do not overly influence estimates.   
The standardized proximity index adjusts for metropolitan area size in a similar manner 
as the standardized centrality measures.   We operationalize three proximity indices: 

o Housing Unit Proximity—the ratio of the average distance among centroids of 
square-mile cells in the EUA to the weighted average distance among housing units 
in the EUA.  

o Job Proximity—the ratio of the average distance among centroids of square-mile 
cells in the EUA to the weighted average distance among jobs in the EUA. 

o Jobs to Housing Units Proximity—the ratio of the average distance among centroids 
of square-mile cells in the EUA to the weighted average distance among jobs and 
housing units in the EUA. 

§ Mixed-use—the degree to which housing units and jobs are located in the same square-
mile area.  The mixed-use indices are based on exposure (P*) indices.  The exposure 
index measures the average presence of one land use type in the places occupied by 
another type.  The mixed-use indices measure exposure of jobs to housing and vice 
versa: 
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o Mixed-use of Jobs to Housing—the average number of housing units in the same 
square-mile cell as a job. 

o Mixed-use of Housing to Jobs—the average number of jobs in the same square-mile 
cell as a housing unit. 

§ Nuclearity—the degree to which jobs within an EUA are disproportionately located in the 
core, as opposed to dispersed in a multi-centric fashion.  One square-mile areas 
considered nuclei, either at the core or sub-centers outside the core, are those that 
contain 8000 or more employees, plus any square-mile cells adjacent to it (including 
those touching only at their corners) containing 4000 or more employees.  Any two 
adjacent square-mile cells, each of which contains 4000 or more employees, which are 
separated from another nucleus by at least one cell containing less than 4000 
employees, is also considered a nucleus.  We operationalize one nuclearity index: 

o Core-dominated Nuclearity—the ratio of jobs in the core center (CBD) to jobs in all 
other sub-centers; CBD is operationalized as square-mile cells containing or 
adjacent to the cell containing City Hall of the major municipality defining the EUA. 

Descriptive statistics for the indices are presented in the appendix.  Using correlation and 
principle-components factor analyses of the fourteen selected indices, Cutsinger et al. 
(2004) identified seven empirically distinct factors of land use for 1990.  We use the factor 
scores generated by their factor analysis as the land use variables in this analysis, 
represented as Lt-1 in the conceptual model.  The seven land use factors are as follows:  

§ Density/ Continuity: comprised mainly of the two continuity indices (micro 
and macro) and the two density indices (job density and housing unit density);  

§ Housing-Job Proximity: comprised mainly of the housing-to-job and 
housing-to-housing proximity indices;  

§ Job Compactness: comprised mainly of the job centrality, job proximity, and 
job concentration indices;  

§ Mixed-use: comprised mainly of the two mixed-use indices (jobs-to-housing 
exposure and housing-to-jobs exposure);  

§ Housing Centrality: comprised mainly of the housing centrality index;  

§ Nuclearity: comprised mainly of the nuclearity index; and  

§ Housing Concentration: comprised mainly of the housing concentration 
index.   

Index loadings for each land use factor are reported in the appendix.  The factors were 
transformed such that a unit change in each corresponds to one standard deviation, and 
the minimum value for each factor is zero.  The factors are scaled such that higher values 
indicate a lower degree of sprawl.  For example, a higher factor score for density/ 
continuity indicates that an urban area has higher density and/or more continuous 
outward development, and is therefore less sprawling on this factor.  See Cutsinger et al. 
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(2004) for a detailed discussion of the factors and observed patterns of land use across 
the fifty EUAs. 
 
Transportation Network 

The change in transportation network infrastructure from 1990-2000 is included in the 
models as an explanatory variable, comprised of three characteristics: 
§ Roadway Provision: the number of roadway (arterial and freeway) lane miles divided 

by geographic land area, using data from the Highway Statistics report of the Federal 
Highway Administration (Federal Highway Administration, 1990, 2001);   

§ Public Transportation Provision: the public transportation vehicle route miles traveled 
(for heavy rail, light rail, commuter rail, bus, demand response, vanpool, ferryboat and 
automated guideway modes) divided by geographic land area, using data from the 
National Transit Database (Federal Transit Administration, 1991, 2001);  

§ Rail: a dummy variable for urban areas with rail systems (light, heavy, commuter rail, 
and automated guideway, if more than ten miles long), according to the National Transit 
Database. 

All three variables are measured for the primary UA within each sample MSA as of 1990 
and 2000, such that a difference measure could be calculated.  The roadway and public 
transportation measures are standardized by land area to make easier comparisons 
across urban areas of different urban scales.  Roadway and public transportation 
provision may be jointly determined, making the direct inclusion of all three variables 
problematic (Hansen and Huang, 1997; Fulton, et al., 2000).  Instead, we employ 
principal-components factor analysis to generate an index of transportation supply.  The 
factor describes the extent of expansion in transportation supply within the urban area 
during the period 1990-2000, where higher values indicate a larger proportion increase in 
road or public transportation network provision per unit area than lower values.   
 

We expect that urban areas with a more extensive road or transit network may be 
better able to manage higher levels of usage before congestion sets in, all else equal.  
Likewise, areas with rapid growth in their transportation network may be able to keep 
pace with growth in travel demand and congestion, and are likely to experience the 
smallest changes in congestion over time.   
Control Variables 

Beyond land use and transportation infrastructure, we expect several indicators of 
demographic change will also directly and indirectly affect traffic congestion, expressed 
as vectors [M,X,Y,Z] in the conceptual model outlined above.  The following attributes 
are included as control variables: 
§ Population Growth Rate: the percentage change in total population, 1990-2000; 

§ Change in Income: the percentage change in per capita income, 1990-2000; 

§ Change in Household Size: the percentage change in average household size, 1990-
2000. 
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All control variables are measured for the primary UA within each sample MSA and 
computed using data from the 1990 and 2000 Decennial Censuses (U.S. Census Bureau, 
2004).  While some previous models have included a larger range of control variables, the 
inclusion of the lagged congestion term as an explanatory variable helps to control for 
idiosyncratic influences of each urban area, such as its age, gender, and racial/ethnic 
structures.   
 

We expect that faster growing urbanized areas are more likely to experience high 
congestion levels, because travel demand closely parallels population growth, and it is 
difficult for the transportation network to keep pace with rapidly growing travel demand.  
We also expect that areas with faster growth in per capita income should also 
experience higher levels of traffic congestion, as more wealthy commuters are more 
likely to use private means of transportation and to travel more than less wealthy 
commuters.  Likewise, areas with larger positive growth in average household size may 
experience higher levels of traffic congestion, in that each person in the household is 
likely to generate trips, and households may not be able to make ideal housing 
decisions from the perspective of minimizing travel for all members.   
Relevant Geography 

The land use factors are measured for the Extended Urban Area (EUA) geography 
described above, while the congestion measures, transportation infrastructure and 
control variables are all measured for the Census-defined Urbanized Area (UA) 
geography.  We believe that the UA represents the relevant area within which 
congestion occurs, while the land uses contributing to congestion are likely drawn from 
a wider geography (precisely the reason we use the EUA to measure land use).  Some 
minor geographic modifications were necessary to maintain relatively consistent 
boundaries over time given the diverse data sources; details are available from the 
corresponding author upon request.   
Results 
Preliminary Bivariate Analyses  

Consistent with our belief that land use may influence congestion slowly over time, we 
begin by examining the bivariate relationships between the land use factors measured 
in 1990 and measures of traffic congestion in 2000.  Conventional wisdom suggests a 
positive relationship between sprawl and congestion, or alternatively, that more compact 
development should yield better transportation outcomes.  Recall that our factors are 
scaled opposite to conventional wisdom; higher levels of each factor indicate less 
sprawl and more compact development.  Therefore, we would expect to find negative 
relationships between the land use factor scores and measures of traffic congestion if 
conventional wisdom held true.   

In fact, we find divergent and unexpected patterns depending on the particular 
dimension of land use being evaluated, as follows (see Table 4 for Pearson’s correlation 
coefficients): 
§ The density/continuity factor is positively related to all three outcomes; more dense, 

continuously developed areas in 1990 tend to have longer commute times, more 
ADT/lane and more delay per capita in 2000 than less dense and less continuously 
developed areas. 
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§ The housing centrality factor is positively related to commute time; areas with more 
housing located nearer to the historic CBD in 1990 (relative to the entire EUA land area) 
tend to have longer commute times in 2000 than areas with more housing located 
relatively farther from the historic CBD. 

§ The nuclearity factor is negatively related to delay per capita; areas with more 
mononuclear employment structures in 1990 tend to have shorter commute times and 
less delay per capita in 2000 than areas with a more polynuclear employment structure. 

Land use factors that initially appear unrelated to congestion outcomes are job 
compactness, mixed use, housing-job proximity, and housing concentration.  
Virtually the same bivariate relationships were found between the land use factors and 
traffic congestion in 1990 (see Appendix).  While suggesting the presence of some 
important relationships between land use and congestion, further multivariate analysis is 
required to determine whether these relationships remain significant after controlling for 
potentially confounding variables, such as population growth and transportation 
investment. 

[Table 4 about here] 

Multiple Regression Analyses 
Three regression models corresponding to (5) were developed to determine whether 

land use patterns in 1990 statistically explain the level of three measures of traffic 
congestion in 2000, after controlling for the level of congestion in 1990, the change in 
transportation network and change in demographic variables from 1990-2000 also 
thought to influence congestion.  (Recall that the models, in effect, explain the change in 
congestion 1990-2000 by controlling for the 1990 congestion level in a model of 2000 
congestion levels.)  All three models perform well in terms of congestion variation 
explained, with R2 values greater than 0.70.  Regression results are reported in Table 
5.3   

[Table 5 about here] 

Commute Time 
Controlling for the 1990 level of congestion, the change in the transportation network 

and demographic variables 1990-2000, and other dimensions of land use in 1990, the 
density/continuity factor did not remain statistically related to commute time in 2000.  
However, the housing-job proximity factor did remain inversely related to commute 
time.  Urban areas with housing located relatively farther from other jobs and housing 
(compared to the total EUA land area) in 1990 tended to have longer commute times in 
2000, all else equal.  The estimated regression parameter suggests that the area in our 
sample with the lowest score for housing-job proximity in 1990 (New Haven) had 
commute times approximately 1.9 minutes longer per trip in 2000 (9% of the 1990 mean 
commute time) than the area in our sample with the highest score for housing-job 
proximity in 1990 (Las Vegas).   

The regression results also indicate that urban areas that are faster growing tended to 
have longer commute times in 2000, which is consistent with our previous surmise that 
the transportation network in these areas did not keep up with the increased demand for 
trips associated with a fast growing population.  Areas with a larger change in 
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household size tended to have shorter commute times in 2000, contrary to 
expectations.   
ADT/lane 

As with the preliminary analyses, the density/continuity factor proved to have a 
positive relationship with ADT/lane, controlling for previous levels of congestion, 
changes in the transportation network and demographics, and other dimensions of land 
use.   Urban areas with higher scores for density/continuity in 1990 tended to have more 
ADT/lane in 2000, all else equal.  These results suggest that localized congestion 
caused by large numbers of people starting and ending trips in a confined area does 
translate into higher subsequent levels of area-wide congestion measures, controlling 
for changes in the transportation network and other relevant characteristics.  The 
estimated regression parameter suggests that the area in our sample with the highest 
score for density/continuity in 1990 (Miami) had approximately 4991 more vehicles per 
lane in 2000 (41% of the 1990 mean ADT/lane) than the area in our sample with the 
lowest score for density/continuity in 1990 (Allentown). 

None of the other land use or control variables have statistically significant 
relationships with ADT/lane, suggesting that the density/continuity component of land 
use patterns is the most important determinant of subsequent levels of this measure 
traffic congestion. 
Delay Per Capita 

As with ADT/lane, the density/continuity factor proved to have a positive relationship 
with delay per capita.  Urban areas characterized by higher density/ continuity factor 
scores tended to have more delay per capita in 2000, all else equal.  The same 
explanation holds as with ADT/lane; localized congestion in dense areas translates into 
higher subsequent levels of travel delay.  The estimated regression parameter suggests 
the area in our sample with the highest score for density/continuity in 1990 (Miami) had 
approximately 13 more hours per year of delay per capita (115% of the 1990 sample 
mean) than the area in our sample with the lowest score for density/continuity in 1990 
(Allentown). 

The housing centrality factor is also positively related to delay per capita, controlling 
for all other model variables.  Urban areas with much of its housing located far from the 
CBD compared to the overall location of its commuter-shed territory tended to have 
lower subsequent levels of delay per capita, all else equal.  For equivalent distance 
traveled, using highway infrastructure closer to the urban core is likely associated with 
more delays and lower speeds than if peripheral infrastructure is used, because of the 
larger number of highway users in a more confined area.  The estimated regression 
parameter suggests that the area with the distribution of its housing relatively closest to 
the CBD in our sample (Philadelphia) had approximately 12 hours per year more delay 
per capita (106% of the 1990 sample mean) than the area in our sample with the least-
centralized housing (Tulsa).   

Faster growing urban areas also tended to have more delay per capita in 2000 than 
slower growing urban areas, likely because the transportation network cannot keep up 
with increased demand for trips that are associated with population growth.   
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Discussion 
This study examined the relationship between seven distinct aspects of land use in 

1990 and three measures of transportation congestion in 2000, using data from a 
nationally representative sample of fifty of the 100 largest U.S. urban areas as of 1990.  
Bivariate correlation analyses revealed that several measures of land use in 1990 were 
significantly related to traffic congestion levels in 2000 (density/continuity, housing 
centrality, and nuclearity).  Only one of the significant relationships identified in the 
correlation analyses was expected on the basis of conventional wisdom. 

Multiple regression analysis, controlling for previous levels of congestion, and 
changes in the transportation network and demographics, also revealed statistically and 
economically significant relationships between several land use factors in 1990 and 
subsequent levels of the three congestion outcomes in 2000.  The density and 
continuity of development was positively related to subsequent levels of ADT/lane and 
delay per capita, as in the preliminary analyses.  Housing centrality was also positively 
related to subsequent levels of delay per capita, while housing-job proximity was 
negatively related to subsequent levels of commute time.  Only the last result 
corresponds to the conventional wisdom that more compact metropolitan land use 
patterns reduce traffic congestion.  This makes intuitive sense: holding other land use 
dimensions constant, increasing housing-job proximity will reduce average work trip 
length and thereby reduce average commuting times.  On the contrary, the bulk of our 
results indicate that, controlling for housing-job proximity and other land use patterns, 
denser conurbations with housing clustered relatively closer to the core increase auto 
volumes and generate more traffic delay, even though these effects apparently are 
insufficient to appear as statistically significant increases in average commute times.4  
These results also prove two points: that the choice of congestion measure may 
substantively affect the results; and that multivariate statistical analyses are necessary 
to control for potentially confounding influences, such as population growth and 
investment in the transportation network. 

Contributions of this research to the field include: the formation of a structural model; 
the use of a unique dataset of land use for a conceptually preferred geography termed 
the Extended Urban Area (EUA); and testing a multivariate model of traffic congestion 
that includes three alternative outcome measures, seven distinct measures of land use, 
controls for prior levels of congestion, and changes in the transportation network and 
demographics also likely to influence the congestion variables.  Unlike previous 
research, this study attempts to overcome simultaneity bias associated with 
endogeneity between land use and traffic congestion by using a lagged model.  Further 
research might use a difference model econometric approach, in which changes in land 
use are used to explain changes in congestion, controlling for changes in demographics 
and the transportation network.  Our lack of land use measures for 2000 prevented the 
use of this type of model here.  A further modification of this research would develop 
separate commute time models by travel mode (e.g., automobiles vs. public 
transportation), although commute time is not reported separately by mode in the 2000 
decennial census (U.S. Census Bureau, 2004).  Should our land use data become 
available for a larger sample of metropolitan areas, it would also be worthwhile to 
consider whether interaction effects might exist between the land use variables and the 
control or transportation network variables.   
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As other scholars and commentators frequently note, traffic congestion is a difficult 
problem to address.  It will be expensive, and may be impractical or shortsighted in 
some areas, to continue expansion of roadways to keep pace with growth in congestion, 
presuming past trends are any indication of future growth.  While travel demand 
management and roadway improvements may offer some relief, planners and 
policymakers should increasingly consider influencing land use patterns as an 
alternative approach to dealing with traffic congestion.  For example, our results imply 
that increasing the proximity of housing to jobs may offer relief from lengthening 
commute times.  To do so would better coordinate travel origins and destinations, 
thereby improving the capacity of the transportation network to handle travel demand.   

Other changes in land use patterns sought in the name of congestion reduction may 
be quite different from those advanced by advocates of “smart growth” policies, 
however.  Our results suggest that increasing either the density of development or the 
percentage of housing located relatively near to the CBD instead of the fringe may 
make highway volumes and traffic-induced delays worse, at least over the span of a 
decade.  In fairness to smart-growth advocates, however, the arguments are typically 
couched in longer-run time frames.  They hope, by creating more compact cities, that 
mass transportation systems can become more economical and desirable to 
consumers, that auto usage will correspondingly fall (or at least level off), and that traffic 
congestion eventually will be reduced thereby.  Unfortunately, the model estimated here 
is not appropriate for analyzing such long run structural changes. 

Readers should also note that the statistical results reported here convey the 
independent effects of each land use factor, controlling for all other land use factors and 
characteristics of the transportation network and demographics likely to influence the 
growth in congestion.  Isolating the congestion effects of a policy-induced change in a 
particular dimension of land use may be difficult in practice because it may be 
impossible to influence any one dimension of land use without also affecting other 
dimensions, the transportation network, and the responses of residents and workers to 
patterns of land use.  Urban areas considering policy responses to congestion would be 
well served by better understanding the complexities of their land use patterns and the 
potential trade-offs between different policy approaches in terms of traffic congestion 
consequences.  We hope that this research serves to advance this understanding. 
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Table 1. Sample of Fifty Metropolitan Areas 

Region Metropolitan Area MSA Code 1990 Population* 
NE Albany/Schenectady/Troy, NY 0160 742,177 

NE Allentown/Bethlehem/Easton, PA 0240 595,081 

S Atlanta, GA 0520 2,959,950 

S Baltimore, MD 0720 2,382,172 

S Baton Rouge, LA 0760 528,264 

NE Boston, MA 1120 3,227,707 

NE Buffalo/Niagara Falls, NY 1280 1,189,288 

S Charlotte, NC 1520 1,162,140 

NC Cincinnati, OH 1640 1,526,092 
NC Columbus, OH 1840 1,345,450 
S Dallas, TX 1920 2,676,248 
W Denver, CO 2080 1,622,980 
NC Detroit, MI 2160 4,266,654 
S El Paso, TX 2320 591,610 
NC Fort Wayne, IN 2760 456,281 
W Fresno, CA 2840 755,580 
NC Grand Rapids/Muskegon/Holland, MI 3000 937,891 
S Houston, TX† 3362 3,731,131 
NC Indianapolis, IN 3480 1,380,491 
S Jacksonville, FL 3600 906,727 
W Las Vegas, NV 4120 852,737 
W Los Angeles, CA† 4472 14,531,529 
S Miami, FL 5000 1,937,094 
NC Milwaukee/Waukesha, WI 5080 1,432,149 
NC Minneapolis/St. Paul, MN 5120 2,538,834 
S Mobile, AL 5160 476,923 
NE New Haven/Meriden, CT 5480 861,424 
S New Orleans, LA 5560 1,285,270 
NC Omaha, NE 5920 639,580 
NE Philadelphia, PA 6160 4,922,175 
W Phoenix/Mesa, AZ 6200 2,238,480 
NE Pittsburgh, PA 6280 2,394,811 
W Portland/Vancouver, OR 6440 1,515,452 
NE Providence/Fall River/Warwick, RI 6480 1,134,350 
S Raleigh/Durham/Chapel Hill, NC 6640 855,545 
NE Rochester, NY 6840 530,180 
W Salt Lake City/Ogden, UT 7160 1,072,227 
S San Antonio, TX 7240 1,324,749 
W San Diego, CA 7320 2,498,016 
W San Jose, CA 7400 1,497,577 
W Seattle/Bellevue/Everett, WA 7600 2,033,156 
NC St. Louis, MO 7040 2,492,525 
W Stockton/Lodi, CA 8120 480,628 
NE Syracuse, NY 8160 587,884 
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Region Metropolitan Area MSA Code 1990 Population* 
W Tacoma, WA 8200 586,203 
S Tulsa, OK 8560 708,954 
S Washington, DC 8840 4,223,485 
S Wilmington/Newark, DE 9160 513,293 
NE Worcester, MA 9240 478,384 
NC Youngstown/Warren, OH 9320 600,895 
Notes: * Redefined for 1990, based on 1993 geography definitions (U.S. Department of Commerce, 1993).  
† Combined Metropolitan Statistical Area (CMSA) 
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Table 2. Descriptive Statistics for Outcomes and Explanatory Variables 

Description Obs Mean Std. Dev. Min Max 
Congestion Outcomes, 2000      
Commute time: mean travel time to work (workers 16yrs+ 
not working at home, all modes); minutes 50 24.4 3.3 18.6 32.2 
ADT/lane: annual average daily traffic per freeway lane; 
vehicles 50 14114 3083 7920 18800 
Delay Per Capita: annual person hrs of delay per capita; 
hours 41 18.5 9.8 3 48 
Congestion Outcomes, 1990      
Commute time: mean travel time to work (workers 16yrs+ 
not working at home, all modes); minutes 50 21.3 2.7 17.4 29.0 
ADT/lane: annual average daily traffic per freeway lane; 
vehicles 50 12065 2874 6315 19855 
Delay Per Capita: annual person hrs of delay per capita; 
hours 41 11.3 9.8 2 49 
Land Use Factors, 1990      
Density/Continuity Factor 50 1.74649  1 0 5.57406 
Housing-Job Proximity Factor 50 3.07177  1 0 6.04177 
Job Compactness Factor 50 1.47437  1 0 4.98713 
Mixed Use Factor 50 2.25409  1 0 5.3612 
Housing Centrality Factor 50 2.26306  1 0 7.09811 
Nuclearity Factor 50 2.111531 1 0 3.77155 
Housing Concentration Factor 50 1.99824  1 0 5.06412 
Transportation Network Factor, 1990-2000      
Change in Transportation Network Factor 50 0 1 -2.34 2.18 
Control Variables, 1990-2000      
Population growth rate; % 50 21.22 17.69 -2.02 88.48 
Change in per capita income; % 50 7323.2 1494.9 3790 11651 
Change in average household size; % 50 0.08 0.23 -0.98 0.28 
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Table 3. EUA Rankings on Congestion Outcomes 

EUA    Commute Time, 2000    ADT/lane, 2000    Delay Per Capita, 2000 
 (minutes)† (rank)# (vehicles)†* (rank) # (hours)† (rank) # 
Albany, NY 20.82 43 10046 45 6 39 
Allentown, PA 23.10 32 11941 36 7 37 
Atlanta, GA 31.12 2 18542 4 31 5 
Baltimore, MD 29.25 4 16432 16 19 20 
Baton Rouge, LA 23.43 31 14004 25   
Boston, MA 28.60 7 17673 9 26 8 
Buffalo, NY 20.56 44 10032 46 5 40 
Charlotte, NC-SC 25.64 19 15062 20 21 13 
Cincinnati, OH-KY-IN 23.89 26 16205 17 19 20 
Columbus, OH 22.05 39 12117 35 17 23 
Dallas, TX 26.75 11 17998 8 32 4 
Denver-Aurora, CO 26.05 14 16481 15 34 2 
Detroit, MI 25.89 17 15103 19 24 11 
El Paso, TX 22.55 37 14455 22 9 35 
Fort Wayne, IN 20.24 45 11839 38   
Fresno, CA 21.47 41 12301 34 10 30 
Grand Rapids, MI 19.37 47 9942 47 10 30 
Houston, TX 28.24 9 13055 30 31 50 
Indianapolis, IN 23.45 30 14125 23 20 17 
Jacksonville, FL 25.83 18 13590 28 14 25 
Las Vegas, NV 24.33 24 16585 14 17 23 
Los Angeles, CA 28.81 5 17452 10 48 1 
Miami, FL 30.12 3 18667 3 26 8 
Milwaukee, WI 21.78 40 16044 18 14 25 
Minneapolis-St. Paul, MN 22.59 36 17128 12 21 13 
Mobile, AL 23.65 27 11163 42   
New Haven, CT 22.71 34 14066 24 12 27 
New Orleans, LA 25.89 16 11926 37 10 30 
Omaha, NE 18.59 50 11085 43 10 30 
Philadelphia, PA-NJ 28.71 6 12413 33 15 22 
Phoenix, AZ 25.96 15 18483 5 26 11 
Pittsburgh, PA 24.98 21 8036 49 7 37 
Portland, OR-WA 23.63 29 18038 7 23 17 
Providence, RI 22.62 35 11723 40 19 29 
Raleigh, NC 22.73 33 12760 31  27 
Rochester, NY 19.27 48 11082 44 3 41 
Salt Lake City, UT 22.25 38 12733 32 9 30 
San Antonio, TX 23.65 28 14967 21 20 13 
San Diego, CA 24.99 20 18800 1 24 17 
San Jose, CA 26.23 13 18739 2 33 5 
Seattle, WA 27.28 10 17357 11 26 10 
St. Louis, MO-IL 24.62 22 13127 29 20 13 
Stockton, CA 26.66 12 13779 27   
Syracuse, NY 18.75 49 7920 50   
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EUA    Commute Time, 2000    ADT/lane, 2000    Delay Per Capita, 2000 
 (minutes)† (rank)# (vehicles)†* (rank) # (hours)† (rank) # 
Tacoma, WA 28.44 8 18189 6   
Tulsa, OK 19.72 46 11794 39 9 36 
Washington, DC-VA-MD 32.18 1 17081 13 35 3 
Wilmington, DE 24.28 25 13956 26   
Worcester, MA 24.35 23 11284 41   
Youngstown, OH-PA 21.25 42 8403 48   
Notes: † Values recomputed to match EUA area (see text).  # Higher ranks indicate more congestion.  * ADT/lane 
above 15,000 vehicles per lane per day suggest congested conditions, while ADT/lane above 17,500 vehicles 
suggests heavy congestion (Schrank and Lomax, 2002). 
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Table 4. Pearson Correlation Coefficients - Land Use Factors and Congestion Outcomes 

Land Use Factors, 1990      Commute Time, 2000      ADT/lane, 2000     Delay Per Capita, 2000
Density/continuity 0.3201** 0.5271*** 0.4419*** 
Housing-job proximity -0.1433 -0.0428 -0.1312 
Job compactness -0.1678 -0.2169 -0.0521 
Mixed Use 0.1089 0.0718 0.1231 
Housing centrality 0.3434** -0.0107 0.2406 
Nuclearity -0.2008 -0.1594 -0.4246*** 
Housing concentration -0.0116 0.0125 -0.1393 
Notes: * p<0.10, ** p<0.05, *** p<0.001. 
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Table 5. Exploratory Regression Models 

Explanatory Variables Commute Time, 
2000 

ADT/lane, 
2000 

Delay Per Capita, 
2000 

Congestion [commute time, ADT/lane, delay 
per capita], 1990 

1.153*** 0.634*** 0.597*** 

Density/Continuity Factor, 1990  0.062 810.829** 2.338*** 
Housing-Job Proximity Factor, 1990  -0.315** 45.296 -0.400 
Job Compactness Factor, 1990  -0.098 -360.262 -0.228 
Mixed Use Factor, 1990  0.093 6.795 -0.097 
Housing Centrality Factor, 1990  0.028 -210.591 1.727** 
Nuclearity Factor, 1990  0.026 -193.310 -1.449 
Housing Concentration Factor, 1990  -0.012 -17.283 -1.002 
MSA Population Growth Rate, 1990-2000 0.035*** 38.871 0.127* 
Change in Per Capita Income, 1990-2000 -0.0001 0.268 0.0005 
Change in Average Household Size, 1990-
2000 

-1.717** -446.360 -4.882 

Change in Transportation Network Factor, 
1990-2000 

-0.198 12.970 -1.613 

Constant 0.756 3512.91 3.511 
N 50 50 41 
F F(12,37)=48.6 F(12,37)=19.45 F(12,28)=13.09 
R2 0.9248 0.7422 0.7837 
Notes: Regressions run with robust standard errors; * p<0.10, ** p<0.05, *** p<0.001. 
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Appendix 
Table 6. Descriptive Statistics of Land Use Indices 

LAND USE INDEX N Minimum Maximum Mean Std. Deviation 
Housing Density† 50 364.81 1,906.98 698.035 288.007 
Job Density† 50 257.08 2,320.49 782.279 371.874 
Micro Continuity 50 0.13 0.80 0.346 0.126 
Macro Continuity 50 0.19 0.78 0.512 0.147 
Housing Concentration† 50 0.36 0.66 0.490 0.045 
Job Concentration† 50 0.51 0.82 0.626 0.072 
Housing Centrality* 50 0.79 2.86 1.194 0.313 
Job Centrality* 50 0.92 3.51 1.660 0.491 
Housing Unit Proximity* 50 1.05 1.97 1.432 0.164 
Job Proximity* 50 1.36 4.26 2.070 0.595 
Housing Unit to Job Proximity* 50 1.10 2.34 1.634 0.248 
Mixed-Use: Exposure of Jobs to Housing  50 366.74 3,160.14 1,724.732 574.472 
Mixed-Use: Exposure of Housing to Jobs 50 782.26 4,143.29 1,884.693 692.820 
Nuclearity: Jobs in Core Center /  
Jobs in All Sub-centers 50 0.29 1.00 0.731 0.182 

Notes: † For developable land only (see text).  * Standardized by corresponding distances using centroids of each 
square mile comprising the EUA.  Details of the construction of all indices are presented in Cutsinger et al. (2004). 
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Table 7. Rotated Component Matrix Describing Seven Land Use Factors 

LAND USE INDEX COMPONENT 

 
Density / 

Continuity 

Housing 
– Job 

Proximity 
Job 

Compactness 
Mixed-

Use 
Housing 

Centrality Nuclearity 
Housing 

Concentration 

Housing Density†  0.813 -0.028 0.050 0.457 0.168 -0.032 -0.127 

Job Density† 0.865 -0.020 -0.146 0.365 0.106 -0.036 -0.065 

Micro Continuity 0.892 -0.076 -0.027 0.109 -0.115 0.025 -0.137 

Macro Continuity 0.773 0.211 -0.407 -0.016 -0.167 -0.144 -0.007 

Housing Concentration† -0.302 0.160 -0.037 -0.074 0.314 0.149 0.852 
Job Concentration† -0.638 -0.093 0.584 -0.116 -0.251 -0.139 0.257 

Housing Centrality* 0.023 0.241 0.079 0.133 0.890 -0.131 0.269 

Job Centrality* -0.126 0.225 0.853 0.162 0.213 0.150 -0.141 

Housing Proximity* 0.094 0.947 0.058 0.078 0.196 -0.040 0.088 

Job Proximity* -0.168 0.504 0.816 -0.059 -0.087 0.088 0.070 

Housing to Job Proximity* -0.037 0.901 0.402 -0.002 0.073 -0.030 0.056 
Mixed-Use: Exposure of  
Jobs to Housing 0.179 0.004 0.168 0.941 0.063 0.081 -0.034 
Mixed-Use: Exposure of  
Housing to Jobs 0.331 0.079 -0.108 0.902 0.064 0.018 -0.028 
Nuclearity: Jobs in Core Center / 
Jobs in All Sub-centers -0.039 -0.047 0.121 0.074 -0.097 0.969 0.098 

% Variation Explained 24.981 15.466 15.377 15.23 8.208 7.574 6.789 
Notes: † For developable land only (see text).  * Standardized by corresponding distances using centroids of each 
square mile comprising the EUA.  Details of the construction of all indices are presented in Cutsinger et al. (2004). 
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Table 8. Correlation Matrix 

 Commute 
Time, 2000 

ADT/Lane, 
2000 

Delay Per 
Capita, 
2000 

Commute 
Time, 1990 

ADT/Lane, 
1990 

Delay Per 
Capita, 
1990 

Density/ 
Continuity 

Factor 

Housing- 
Job 

Proximity 
Factor 

Job 
Compactness 

Factor 

 ctime0 adtpflc0 delaypc0 ctime9 adtpflc9 delaypc9 f1pos f2pos f3pos 
          
ctime0 1.0000         
          
          
adtpflc0 0.6588 1.0000        
 0.0000         
          
delaypc0 0.7543 0.7487 1.0000       
 0.0000 0.0000        
          
ctime9 0.9366 0.6188 0.7781 1.0000      
 0.0000 0.0000 0.0000       
          
adtpflc9 0.6315 0.7846 0.7564 0.6834 1.0000     
 0.0000 0.0000 0.0000 0.0000      
          
delaypc9 0.6013 0.5525 0.8034 0.6442 0.7345 1.0000    
 0.0000 0.0002 0.0000 0.0000 0.0000     
          
f1pos 0.3201 0.5271 0.4419 0.3698 0.4791 0.3967 1.0000   
 0.0235 0.0001 0.0038 0.0082 0.0004 0.0102    
          
f2pos -0.1433 -0.0428 -0.1312 -0.0506 -0.1109 -0.1406 0.0000 1.0000  
 0.3209 0.7680 0.4135 0.7271 0.4434 0.3808 1.0000   
          
f3pos -0.1678 -0.2169 -0.0521 -0.1292 -0.0936 -0.0165 0.0000 0.0000 1.0000 
 0.2440 0.1304 0.7462 0.3713 0.5179 0.9186 1.0000 1.0000  
          
f4pos 0.1089 0.0718 0.1231 0.1057 0.1487 0.2482 0.0000 0.0000 0.0000 
 0.4515 0.6201 0.4432 0.4649 0.3027 0.1176 1.0000 1.0000 1.0000 
          
f5pos 0.3434 -0.0107 0.2486 0.4135 0.1984 0.2684 0.0000 0.0000 0.0000 
 0.0146 0.9411 0.1170 0.0028 0.1673 0.0897 1.0000 1.0000 1.0000 
          
f6pos -0.2008 -0.1594 -0.4246 -0.2313 -0.1516 -0.4233 0.0000 0.0000 0.0000 
 0.1621 0.2689 0.0057 0.1061 0.2932 0.0058 1.0000 1.0000 1.0000 
          
f7pos -0.0116 0.0125 -0.1393 -0.0147 0.0455 -0.0574 0.0000 0.0000 0.0000 
 0.9360 0.9311 0.3851 0.9191 0.7539 0.7213 1.0000 1.0000 1.0000 
          
popgr 0.1393 0.2969 0.1258 0.0073 0.1625 -0.0156 -0.1191 0.0521 -0.0294 
 0.3346 0.0363 0.4332 0.9600 0.2596 0.9230 0.4100 0.7192 0.8393 
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 Commute 
Time, 2000 

ADT/Lane, 
2000 

Delay Per 
Capita, 
2000 

Commute 
Time, 1990 

ADT/Lane, 
1990 

Delay Per 
Capita, 
1990 

Density/ 
Continuity 

Factor 

Housing- 
Job 

Proximity 
Factor 

Job 
Compactness 

Factor 

 ctime0 adtpflc0 delaypc0 ctime9 adtpflc9 delaypc9 f1pos f2pos f3pos 
          
cpcinc 0.1996 0.3285 0.2924 0.2550 0.2321 0.2413 0.0911 -0.0145 -0.2419 
 0.1646 0.0198 0.0636 0.0739 0.1048 0.1285 0.5290 0.9203 0.0905 
          
cavghh -0.0240 0.1466 0.0926 0.0125 0.1404 0.0940 0.1372 0.0567 0.2021 
 0.8688 0.3096 0.5645 0.9315 0.3307 0.5590 0.3419 0.6959 0.1593 
          
trcf_area -0.0055 -0.0143 -0.1414 0.0823 0.0183 0.0161 0.0032 0.0626 0.0527 
 0.9698 0.9217 0.3780 0.5700 0.8997 0.9206 0.9822 0.6657 0.7162 
 
 
Correlation Matrix (continued) 
 

 Mixed Use 
Factor 

Housing 
Centrality 

Factor 

Nuclearity 
Factor 

Housing 
Concentration 

Factor 

Population 
Growth 
Rate, 

1990-2000 

Change in 
Per Capita 

Income, 
1990-2000 

Change in 
Average 

Household 
Size, 1990-

2000 

Change in 
Transportation 

Network 
Factor, 1990-

2000 
 f4pos f5pos f6pos f7pos popgr cpcinc cavghh trcf_area 

         
f5pos 0.0000 1.0000       
 1.0000        
         
f6pos 0.0000 0.0000 1.0000      
 1.0000 1.0000       
         
f7pos 0.0000 0.0000 0.0000 1.0000     
 1.0000 1.0000 1.0000      
         
popgr -0.0948 -0.2917 0.0002 -0.0601 1.0000    
 0.5124 0.0399 0.9988 0.6783     
         
cpcinc 0.0152 0.0030 -0.0548 0.0065 -0.0010 1.0000   
 0.9165 0.9836 0.7055 0.9641 0.9944    
         
cavghh -0.0208 -0.1212 -0.0095 -0.1198 0.4359 -0.1749 1.0000  
 0.8859 0.4019 0.9479 0.4071 0.0016 0.2245   
         
trcf_area 0.0332 0.1985 -0.0587 -0.0512 -0.0854 0.0256 -0.0100 1.0000 
 0.8191 0.1670 0.6855 0.7241 0.5553 0.8599 0.9449  
Notes: First number in the cell is the Pearson correlation coefficient; second number is the p value; coefficients are 
bolded where p<0.10. 
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Endnotes 
 

                                                
1 The National Personal Transportation Survey (NPTS) contains more detailed journey-to-work data, 
including commute time by mode, but participants are not typically surveyed in a geographically-
representative manner such that urban scale measures (i.e., for urbanized areas or metropolitan 
statistical areas) could be computed for each survey year.   
2 Congestion delay data are not available for the following areas in our sample: Baton Rouge, LA; Fort 
Wayne, IN; Mobile, AL; Stockton/Lodi, CA; Syracuse, NY; Tacoma, WA; Wilmington/Newark, DE; 
Worcester, MA; and Youngstown/Warren, OH.   
3 In preliminary models we experimented with nonlinear specifications of land use variables but none of 
these proved statistically significant and thus are omitted from the model reported here. 
4 This may be due to the fact that commute times are computed across all modes of transport, not just 
automobiles.     


