Electronic Thesis/Dissertation


Marine Hydrokinetic (MHK) systems: A systems engineering approach to select locations for the practical harvest of electricity from shallow water tidal currents Open Access

Downloadable Content

Download PDF

Due to increasing atmospheric CO2 concentration and its effect on global climates, the United States Environmental Protection Agency (EPA) proposes a Clean Power Plan (CPP) mandating CO2 reductions which will likely force the early retirement of inefficient, aging power plants. Consequentially, removing these plants equates to a shortfall of approximately 66 GW of electricity. These factors add to the looming resource problems of choosing whether to build large replacement power plants or consider alternative energy sources as a means to help close the gap between electricity supply and demand in a given region. One energy source, shallow water tidal currents, represents opportunities to convert kinetic energy to mechanical forms and provide electricity to homes and businesses. Nearly 2,000 National Oceanic Atmospheric Administration (NOAA) tidal current data points from Maine to Texas are considered. This paper, based on systems engineering thinking, provides key attributes (e.g. turbine efficiency, array size, transmission losses) for consideration as decision makers seek to identify where to site Marine Hydrokinetic (MHK) systems and the number of homes powered by the practical harvest of electricity from tidal currents at those locations with given attributes. A systems engineering process model is proposed for consideration as is a regression based equation to estimate MHK machine parameters needed for power a given number of homes.

Author Language Keyword Date created Type of Work Rights statement GW Unit Degree Advisor Committee Member(s) Persistent URL