Electronic Thesis/Dissertation


Dynamics of Ultrasound Contrast Agents and Nonlinear Acoustic Waves: Experiments, Modeling, and Theories Open Access

Downloadable Content

Download PDF

Bubbles occur in many natural and biological flows as well as in numerous industrial phenomena, such as pumps, propellers, turbines, and chemical processing plants. They have been widely studied in the past leading to a large body of literature. However, bubbles appearing in different situations differ significantly in their physical characteristics and behaviors. Recently, bubbles of diameter less than 10 micrometers have found applications in diagnostic ultrasound imaging. These microbubble-based ultrasound contrast agents (UCA) are intravenously administered in patients before ultrasound imaging. Due to the compressive gas core, they generate substantial ultrasound echoes leading to significant enhancement of image quality and contrast. Free bubbles of a micrometer diameter experience a large surface tension induced Laplace pressure leading to their quick dissolution in milliseconds. UCAs are stabilized by coating them with a shell of lipids, polymers, proteins, and other surface-active materials and changing the gas content from air to a high molecular weight low solubility gas such as perfluorocarbon. The past literature of bubble dynamics are mostly restricted to free bubbles. The stabilizing shell of UCAs, however, critically affects their dynamics. In this thesis, we performed acoustic characterization of several UCAs coated with polymer and lipids. We experimentally measured their acoustic attenuation and scattering, of which the data were used in mathematical models to determine shell properties and nonlinear dynamics. Several different interfacial rheological models were employed. Experimental acoustic characterization was also extended to a novel type of nanoparticle suspensionpolymersomes, vesicles encapsulated by amphiphilic polymers. The later part of the thesis is devoted to modeling the effects of the presence of coated microbubbles to the overall effective bulk properties of bubbly liquids. Introduction of microbubbles in the liquids does not only modify the bulk properties of the medium (bubbly liquids) but also significantly changes the natures of the propagating waves (e.g., the sound velocity in bubble suspension was found to be as low as 20 m/s). We investigate the nonlinear nature of the acoustic wave in bubbly liquids. Specifically, we theoretically show that microbubbles could change the nonlinearity of the medium, characterized by quantity B/A.

Author Language Keyword Date created Type of Work Rights statement GW Unit Degree Advisor Committee Member(s) Persistent URL