Electronic Thesis/Dissertation


Analysis of the factors Contributing to the Heat Observed in Electrochemical Cells Used in Condensed Matter Nuclear Science (CMNS) Open Access

Downloadable Content

Download PDF

This paper discusses two types of study conducted by student in an attempt to support, or refute, hypotheses of possible sources behind the excess heat observed in CMNS experiments. The first study involves a study of over 200 papers in CMNS. This was initiated due to the concern of some critics of CMNS research that small energy changes in many H2O or D2O molecules in electrochemical cells can explain the observed excess heat. It was determined that 65% of the 17 papers that documented excess energy and cell volume values rendered ratios that exceed the vibrational energy of water molecules at room temperature (0.04eV/molecule), with the highest ratio being 43.6eV/molecule. Such ratios are far beyond what is plausible for water to be the source of anomalous heat. Therefore, it is concluded that some unknown rearrangement of water molecules in many CMNS papers is not the source of excess heat. This can be used to rule out the molecular rearrangement hypothesis used to explain the source of observed excess heat, which is the main objective of the first study. Other objectives for the 1st study include the generation of a database of those 335 papers in CMNS and a study of the possibility of any correlation between energy and cell volume based on data extracted from those papers.The second study involves the usage of spectroscopy methods, particularly UV-VIS, in identifying chemical reactions present within a typical CMNS electrochemical cell. Electrolysis of Mel Miles' chemical recipe (a Pd co-deposition system) was conducted. Both absorption and emission measurements were obtained for the overall solution and for the reference chemicals involved in an attempt to find a correlation between spectra and thus determine the specific chemical reactions involved in every stage. The absorption experiment rendered unreliable spectral data due to instrumentation/UV-VIS limitations, concentration effects, environmental factors, and human error. Therefore, it is concluded that absorption offers very little utility in identifying chemical reactions. The emission experiment was initiated but not fully finished; nonetheless, it showed better data, thus rendering it a more viable approach in chemical analysis than absorption. Several vibronic progression and lone peaks were clearly discernable in emission spectra. Without remediation and a follow-up study, recurring instrumentation/UV-VIS issues proscribe drawing conclusions; however, emission shows to be promising and can be later used to conclusively refute, or support, the chemical reactions hypothesis.

Author Language Keyword Date created Type of Work Rights statement GW Unit Degree Advisor Committee Member(s) Persistent URL