Dynamic Interaction between Cap & Trade and Electricity Markets Open Access

Greenhouse Gases (GHG), such as Carbon-Dioxide (CO2), which is released in the atmosphere due to anthropogenic activities like power production, are now accepted as the main culprits for global warming. The Regional Greenhouse Gas Initiative (RGGI), an initiative of the North East and Mid-Atlantic States of the United States (US) for limiting the emission of GHG, has developed a regional cap-and-trade program for CO2 emissions for power plants. Existing cap-and-trade programs in US and Europe for Greenhouse Gases have recently been plagued by over-allocation. Carbon prices recently collapsed in all these markets during the global recession. Since then, there have been significant policy changes, which have resulted in the adoption of aggressive emission cap targets by most major carbon emission markets. This is expected to make carbon emissions availability more restrictive, raising the prices of these credits. These emissions markets are expected to have a major impact on the wholesale electricity markets. Two models to study the interaction of these two markets are presented. These models assess the impact of the emissions market on wholesale electricity prices. The first model characterizes the competition between two types of power plants (coal and gas) in both the electricity and emissions markets as a dynamic game using the Cournot approximation. Under this approximation, we find that in the Nash equilibrium the plants increase their permit allocation to high-demand periods and the marginal value of each credit for a plant is identical in all periods under their optimal equilibrium strategy. The second numerical model allows us to explicitly evaluate the closed loop equilibrium of the dynamic interaction of two competitors in these markets. We find that plants often try to corner the market and push prices all the way to the price cap. Power plants derive most of their profits from these extreme price regimes. In the experiments where trading is allowed, plants can collude to keep prices at the price cap. These problems can be averted by careful allocation of credits and strong regulation to deter market manipulation.

Relationships

In Administrative Set:

Descriptions

Attribute NameValues
Author
Language
Keyword
Date created
Type of Work
Rights statement
GW Unit
Degree
Advisor
Committee Member(s)
Persistent URL
License
Last modified:

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items