Electronic Thesis/Dissertation

 

Advanced Fabrication Techniques for Precisely Controlled Micro and Nano Scale Environments for Complex Tissue Regeneration and Biomedical Applications Open Access

As modern medicine advances, it is still very challenging to cure joint defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The current clinical standard for catastrophic or late stage joint degradation is a total joint implant, where the damaged joint is completely excised and replaced with a metallic or artificial joint. However, these procedures still only lasts for 10-15 years, and there are hosts of recovery complications which can occur. Thus, these studies have sought to employ advanced biomaterials and scaffold fabricated techniques to effectively regrow joint tissue, instead of merely replacing it with artificial materials. We can hypothesize here that the inclusion of biomimetic and bioactive nanomaterials with highly functional electrospun and 3D printed scaffold can improve physical characteristics (mechanical strength, surface interactions and nanotexture) enhance cellular growth and direct stem cell differentiation for bone, cartilage and vascular growth as well as cancer metastasis modeling. Nanomaterial inclusion and controlled 3D printed features effectively increased nano surface roughness, Young’s Modulus and provided effective flow paths for simulated arterial blood. All of the approaches explored proved highly effective for increasing cell growth, as a result of increasing micro-complexity and nanomaterial incorporation. Additionally, chondrogenic and osteogenic differentiation, cell migration, cell to cell interaction and vascular formation were enhanced. Finally, growth-factor(gf)-loaded polymer nanospheres greatly improved vascular cell behavior, and provided a highly bioactive scaffold for mesenchymal stem cell (MSC) and human umbilical vein endothelial cell (HUVEC) co-culture and bone formation. In conclusion, electrospinning and 3D printing when combined effectively with biomimetic and bioactive nanomaterials (i.e. carbon nanomaterials, collagen, nHA, polymer drug delivery nanospheres) can provide high performance, functional materials that also serve as effective tissue forming 3D environments.Both general science knowledge and the translational potential of tissue engineered constructs were advanced by original contributions to the fields for tissue engineering and orthopedic medicine. The most original advancement of general science comes from a successful combination of advanced nanomaterials and biomaterials with existing 3D printing and CAD design to support multiple types of cells and tissues. Future translation of these technologies was advanced due to the highly functional nature of these constructs (i.e. mechanical and hydrodynamic characteristics). Future work would involve more evaluation of vascular neogenesis, small animal models to evaluate bioactivity and biocompatibility and large clinically relevant animals to measure gross tissue formation and biomechanical performance.

Author Language Keyword Date created Type of Work Rights statement GW Unit Degree Advisor Committee Member(s) Persistent URL
License

Notice to Authors

If you are the author of this work and you have any questions about the information on this page, please use the Contact form to get in touch with us.

Relationships

Items