Electronic Thesis/Dissertation

 

Robotic Motion Learning Framework to Promote Social Engagement Open Access

Downloadable Content

Download PDF

This paper discusses a novel framework designed to increase human-robot interaction through robotic imitation of the user's gestures. The set up consists of a humanoid robotic agent that socializes with and play games with the user. For the experimental group, the robot also imitates one of the user's novel gestures during a play session. We hypothesize that the robot's use of imitation will increase the user's openness towards engaging with the robot. Preliminary results from a pilot study of 12 subjects are promising in that post-imitation, experimental subjects displayed a more positive emotional state, had higher instances of mood contagion towards the robot, and interpreted the robot to have a higher level of autonomy than their control group counterparts. These results point to an increased user interest in engagement fueled by personalized imitation during interaction.

Author Language Keyword Date created Type of Work Rights statement GW Unit Degree Advisor Committee Member(s) Persistent URL
License

Relationships

Items